Spaces:
Runtime error
Runtime error
import torch | |
import inspect | |
import sys | |
from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl | |
from modules.sd_samplers_cfg_denoiser import CFGDenoiser | |
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback | |
from modules.shared import opts | |
import modules.shared as shared | |
from backend.sampling.sampling_function import sampling_prepare, sampling_cleanup | |
samplers_timesteps = [ | |
('DDIM', sd_samplers_timesteps_impl.ddim, ['ddim'], {}), | |
('DDIM CFG++', sd_samplers_timesteps_impl.ddim_cfgpp, ['ddim_cfgpp'], {}), | |
('PLMS', sd_samplers_timesteps_impl.plms, ['plms'], {}), | |
('UniPC', sd_samplers_timesteps_impl.unipc, ['unipc'], {}), | |
] | |
samplers_data_timesteps = [ | |
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: CompVisSampler(funcname, model), aliases, options) | |
for label, funcname, aliases, options in samplers_timesteps | |
] | |
class CompVisTimestepsDenoiser(torch.nn.Module): | |
def __init__(self, model, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.inner_model = model | |
self.inner_model.alphas_cumprod = 1.0 / (self.inner_model.forge_objects.unet.model.predictor.sigmas ** 2.0 + 1.0) | |
def forward(self, input, timesteps, **kwargs): | |
return self.inner_model.apply_model(input, timesteps, **kwargs) | |
class CFGDenoiserTimesteps(CFGDenoiser): | |
def __init__(self, sampler): | |
super().__init__(sampler) | |
self.classic_ddim_eps_estimation = True | |
def inner_model(self): | |
if self.model_wrap is None: | |
self.model_wrap = CompVisTimestepsDenoiser(shared.sd_model) | |
return self.model_wrap | |
class CompVisSampler(sd_samplers_common.Sampler): | |
def __init__(self, funcname, sd_model): | |
super().__init__(funcname) | |
self.eta_option_field = 'eta_ddim' | |
self.eta_infotext_field = 'Eta DDIM' | |
self.eta_default = 0.0 | |
self.model_wrap_cfg = CFGDenoiserTimesteps(self) | |
self.model_wrap = self.model_wrap_cfg.inner_model | |
def get_timesteps(self, p, steps): | |
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) | |
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: | |
discard_next_to_last_sigma = True | |
p.extra_generation_params["Discard penultimate sigma"] = True | |
steps += 1 if discard_next_to_last_sigma else 0 | |
timesteps = torch.clip(torch.asarray(list(range(0, 1000, 1000 // steps)), device=devices.device) + 1, 0, 999) | |
return timesteps | |
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): | |
unet_patcher = self.model_wrap.inner_model.forge_objects.unet | |
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x) | |
self.model_wrap.inner_model.alphas_cumprod = self.model_wrap.inner_model.alphas_cumprod.to(x.device) | |
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) | |
timesteps = self.get_timesteps(p, steps).to(x.device) | |
timesteps_sched = timesteps[:t_enc] | |
alphas_cumprod = shared.sd_model.alphas_cumprod | |
sqrt_alpha_cumprod = torch.sqrt(alphas_cumprod[timesteps[t_enc]]) | |
sqrt_one_minus_alpha_cumprod = torch.sqrt(1 - alphas_cumprod[timesteps[t_enc]]) | |
xi = x.to(noise) * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod | |
if opts.img2img_extra_noise > 0: | |
p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise | |
extra_noise_params = ExtraNoiseParams(noise, x, xi) | |
extra_noise_callback(extra_noise_params) | |
noise = extra_noise_params.noise | |
xi += noise * opts.img2img_extra_noise * sqrt_alpha_cumprod | |
extra_params_kwargs = self.initialize(p) | |
parameters = inspect.signature(self.func).parameters | |
if 'timesteps' in parameters: | |
extra_params_kwargs['timesteps'] = timesteps_sched | |
if 'is_img2img' in parameters: | |
extra_params_kwargs['is_img2img'] = True | |
self.model_wrap_cfg.init_latent = x | |
self.last_latent = x | |
self.sampler_extra_args = { | |
'cond': conditioning, | |
'image_cond': image_conditioning, | |
'uncond': unconditional_conditioning, | |
'cond_scale': p.cfg_scale, | |
's_min_uncond': self.s_min_uncond | |
} | |
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) | |
self.add_infotext(p) | |
sampling_cleanup(unet_patcher) | |
return samples | |
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): | |
unet_patcher = self.model_wrap.inner_model.forge_objects.unet | |
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x) | |
self.model_wrap.inner_model.alphas_cumprod = self.model_wrap.inner_model.alphas_cumprod.to(x.device) | |
steps = steps or p.steps | |
timesteps = self.get_timesteps(p, steps).to(x.device) | |
extra_params_kwargs = self.initialize(p) | |
parameters = inspect.signature(self.func).parameters | |
if 'timesteps' in parameters: | |
extra_params_kwargs['timesteps'] = timesteps | |
self.last_latent = x | |
self.sampler_extra_args = { | |
'cond': conditioning, | |
'image_cond': image_conditioning, | |
'uncond': unconditional_conditioning, | |
'cond_scale': p.cfg_scale, | |
's_min_uncond': self.s_min_uncond | |
} | |
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) | |
self.add_infotext(p) | |
sampling_cleanup(unet_patcher) | |
return samples | |
sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__] | |
VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions | |