Spaces:
Runtime error
Runtime error
import torch | |
import tqdm | |
import k_diffusion.sampling | |
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None): | |
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023) | |
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]} | |
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list | |
""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
step_id = 0 | |
from k_diffusion.sampling import to_d, get_sigmas_karras | |
def heun_step(x, old_sigma, new_sigma, second_order=True): | |
nonlocal step_id | |
denoised = model(x, old_sigma * s_in, **extra_args) | |
d = to_d(x, old_sigma, denoised) | |
if callback is not None: | |
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised}) | |
dt = new_sigma - old_sigma | |
if new_sigma == 0 or not second_order: | |
# Euler method | |
x = x + d * dt | |
else: | |
# Heun's method | |
x_2 = x + d * dt | |
denoised_2 = model(x_2, new_sigma * s_in, **extra_args) | |
d_2 = to_d(x_2, new_sigma, denoised_2) | |
d_prime = (d + d_2) / 2 | |
x = x + d_prime * dt | |
step_id += 1 | |
return x | |
steps = sigmas.shape[0] - 1 | |
if restart_list is None: | |
if steps >= 20: | |
restart_steps = 9 | |
restart_times = 1 | |
if steps >= 36: | |
restart_steps = steps // 4 | |
restart_times = 2 | |
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) | |
restart_list = {0.1: [restart_steps + 1, restart_times, 2]} | |
else: | |
restart_list = {} | |
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()} | |
step_list = [] | |
for i in range(len(sigmas) - 1): | |
step_list.append((sigmas[i], sigmas[i + 1])) | |
if i + 1 in restart_list: | |
restart_steps, restart_times, restart_max = restart_list[i + 1] | |
min_idx = i + 1 | |
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0)) | |
if max_idx < min_idx: | |
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1] | |
while restart_times > 0: | |
restart_times -= 1 | |
step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:])) | |
last_sigma = None | |
for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable): | |
if last_sigma is None: | |
last_sigma = old_sigma | |
elif last_sigma < old_sigma: | |
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5 | |
x = heun_step(x, old_sigma, new_sigma) | |
last_sigma = new_sigma | |
return x | |