Spaces:
Runtime error
Runtime error
# from __future__ import annotations | |
# import math | |
# import psutil | |
# import platform | |
# | |
# import torch | |
# from torch import einsum | |
# | |
# from ldm.util import default | |
# from einops import rearrange | |
# | |
# from modules import shared, errors, devices, sub_quadratic_attention | |
# from modules.hypernetworks import hypernetwork | |
# | |
# import ldm.modules.attention | |
# import ldm.modules.diffusionmodules.model | |
# | |
# import sgm.modules.attention | |
# import sgm.modules.diffusionmodules.model | |
# | |
# diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward | |
# sgm_diffusionmodules_model_AttnBlock_forward = sgm.modules.diffusionmodules.model.AttnBlock.forward | |
# | |
# | |
# class SdOptimization: | |
# name: str = None | |
# label: str | None = None | |
# cmd_opt: str | None = None | |
# priority: int = 0 | |
# | |
# def title(self): | |
# if self.label is None: | |
# return self.name | |
# | |
# return f"{self.name} - {self.label}" | |
# | |
# def is_available(self): | |
# return True | |
# | |
# def apply(self): | |
# pass | |
# | |
# def undo(self): | |
# ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward | |
# ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward | |
# | |
# sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward | |
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sgm_diffusionmodules_model_AttnBlock_forward | |
# | |
# | |
# class SdOptimizationXformers(SdOptimization): | |
# name = "xformers" | |
# cmd_opt = "xformers" | |
# priority = 100 | |
# | |
# def is_available(self): | |
# return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.cuda.is_available() and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)) | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = xformers_attention_forward | |
# ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward | |
# sgm.modules.attention.CrossAttention.forward = xformers_attention_forward | |
# sgm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward | |
# | |
# | |
# class SdOptimizationSdpNoMem(SdOptimization): | |
# name = "sdp-no-mem" | |
# label = "scaled dot product without memory efficient attention" | |
# cmd_opt = "opt_sdp_no_mem_attention" | |
# priority = 80 | |
# | |
# def is_available(self): | |
# return hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward | |
# ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward | |
# sgm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward | |
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward | |
# | |
# | |
# class SdOptimizationSdp(SdOptimizationSdpNoMem): | |
# name = "sdp" | |
# label = "scaled dot product" | |
# cmd_opt = "opt_sdp_attention" | |
# priority = 70 | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward | |
# ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward | |
# sgm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward | |
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward | |
# | |
# | |
# class SdOptimizationSubQuad(SdOptimization): | |
# name = "sub-quadratic" | |
# cmd_opt = "opt_sub_quad_attention" | |
# | |
# @property | |
# def priority(self): | |
# return 1000 if shared.device.type == 'mps' else 10 | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward | |
# ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward | |
# sgm.modules.attention.CrossAttention.forward = sub_quad_attention_forward | |
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward | |
# | |
# | |
# class SdOptimizationV1(SdOptimization): | |
# name = "V1" | |
# label = "original v1" | |
# cmd_opt = "opt_split_attention_v1" | |
# priority = 10 | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 | |
# sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 | |
# | |
# | |
# class SdOptimizationInvokeAI(SdOptimization): | |
# name = "InvokeAI" | |
# cmd_opt = "opt_split_attention_invokeai" | |
# | |
# @property | |
# def priority(self): | |
# return 1000 if shared.device.type != 'mps' and not torch.cuda.is_available() else 10 | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI | |
# sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI | |
# | |
# | |
# class SdOptimizationDoggettx(SdOptimization): | |
# name = "Doggettx" | |
# cmd_opt = "opt_split_attention" | |
# priority = 90 | |
# | |
# def apply(self): | |
# ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward | |
# ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward | |
# sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward | |
# sgm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward | |
# | |
# | |
# def list_optimizers(res): | |
# res.extend([ | |
# SdOptimizationXformers(), | |
# SdOptimizationSdpNoMem(), | |
# SdOptimizationSdp(), | |
# SdOptimizationSubQuad(), | |
# SdOptimizationV1(), | |
# SdOptimizationInvokeAI(), | |
# SdOptimizationDoggettx(), | |
# ]) | |
# | |
# | |
# if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: | |
# try: | |
# import xformers.ops | |
# shared.xformers_available = True | |
# except Exception: | |
# errors.report("Cannot import xformers", exc_info=True) | |
# | |
# | |
# def get_available_vram(): | |
# if shared.device.type == 'cuda': | |
# stats = torch.cuda.memory_stats(shared.device) | |
# mem_active = stats['active_bytes.all.current'] | |
# mem_reserved = stats['reserved_bytes.all.current'] | |
# mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | |
# mem_free_torch = mem_reserved - mem_active | |
# mem_free_total = mem_free_cuda + mem_free_torch | |
# return mem_free_total | |
# else: | |
# return psutil.virtual_memory().available | |
# | |
# | |
# # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion | |
# def split_cross_attention_forward_v1(self, x, context=None, mask=None, **kwargs): | |
# h = self.heads | |
# | |
# q_in = self.to_q(x) | |
# context = default(context, x) | |
# | |
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
# k_in = self.to_k(context_k) | |
# v_in = self.to_v(context_v) | |
# del context, context_k, context_v, x | |
# | |
# q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) | |
# del q_in, k_in, v_in | |
# | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k, v = q.float(), k.float(), v.float() | |
# | |
# with devices.without_autocast(disable=not shared.opts.upcast_attn): | |
# r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
# for i in range(0, q.shape[0], 2): | |
# end = i + 2 | |
# s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) | |
# s1 *= self.scale | |
# | |
# s2 = s1.softmax(dim=-1) | |
# del s1 | |
# | |
# r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) | |
# del s2 | |
# del q, k, v | |
# | |
# r1 = r1.to(dtype) | |
# | |
# r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
# del r1 | |
# | |
# return self.to_out(r2) | |
# | |
# | |
# # taken from https://github.com/Doggettx/stable-diffusion and modified | |
# def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs): | |
# h = self.heads | |
# | |
# q_in = self.to_q(x) | |
# context = default(context, x) | |
# | |
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
# k_in = self.to_k(context_k) | |
# v_in = self.to_v(context_v) | |
# | |
# dtype = q_in.dtype | |
# if shared.opts.upcast_attn: | |
# q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float() | |
# | |
# with devices.without_autocast(disable=not shared.opts.upcast_attn): | |
# k_in = k_in * self.scale | |
# | |
# del context, x | |
# | |
# q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) | |
# del q_in, k_in, v_in | |
# | |
# r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
# | |
# mem_free_total = get_available_vram() | |
# | |
# gb = 1024 ** 3 | |
# tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() | |
# modifier = 3 if q.element_size() == 2 else 2.5 | |
# mem_required = tensor_size * modifier | |
# steps = 1 | |
# | |
# if mem_required > mem_free_total: | |
# steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) | |
# # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | |
# # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | |
# | |
# if steps > 64: | |
# max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | |
# raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | |
# f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') | |
# | |
# slice_size = q.shape[1] // steps | |
# for i in range(0, q.shape[1], slice_size): | |
# end = min(i + slice_size, q.shape[1]) | |
# s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) | |
# | |
# s2 = s1.softmax(dim=-1, dtype=q.dtype) | |
# del s1 | |
# | |
# r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | |
# del s2 | |
# | |
# del q, k, v | |
# | |
# r1 = r1.to(dtype) | |
# | |
# r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
# del r1 | |
# | |
# return self.to_out(r2) | |
# | |
# | |
# # -- Taken from https://github.com/invoke-ai/InvokeAI and modified -- | |
# mem_total_gb = psutil.virtual_memory().total // (1 << 30) | |
# | |
# | |
# def einsum_op_compvis(q, k, v): | |
# s = einsum('b i d, b j d -> b i j', q, k) | |
# s = s.softmax(dim=-1, dtype=s.dtype) | |
# return einsum('b i j, b j d -> b i d', s, v) | |
# | |
# | |
# def einsum_op_slice_0(q, k, v, slice_size): | |
# r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
# for i in range(0, q.shape[0], slice_size): | |
# end = i + slice_size | |
# r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) | |
# return r | |
# | |
# | |
# def einsum_op_slice_1(q, k, v, slice_size): | |
# r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
# for i in range(0, q.shape[1], slice_size): | |
# end = i + slice_size | |
# r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) | |
# return r | |
# | |
# | |
# def einsum_op_mps_v1(q, k, v): | |
# if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096 | |
# return einsum_op_compvis(q, k, v) | |
# else: | |
# slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) | |
# if slice_size % 4096 == 0: | |
# slice_size -= 1 | |
# return einsum_op_slice_1(q, k, v, slice_size) | |
# | |
# | |
# def einsum_op_mps_v2(q, k, v): | |
# if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16: | |
# return einsum_op_compvis(q, k, v) | |
# else: | |
# return einsum_op_slice_0(q, k, v, 1) | |
# | |
# | |
# def einsum_op_tensor_mem(q, k, v, max_tensor_mb): | |
# size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) | |
# if size_mb <= max_tensor_mb: | |
# return einsum_op_compvis(q, k, v) | |
# div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() | |
# if div <= q.shape[0]: | |
# return einsum_op_slice_0(q, k, v, q.shape[0] // div) | |
# return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) | |
# | |
# | |
# def einsum_op_cuda(q, k, v): | |
# stats = torch.cuda.memory_stats(q.device) | |
# mem_active = stats['active_bytes.all.current'] | |
# mem_reserved = stats['reserved_bytes.all.current'] | |
# mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) | |
# mem_free_torch = mem_reserved - mem_active | |
# mem_free_total = mem_free_cuda + mem_free_torch | |
# # Divide factor of safety as there's copying and fragmentation | |
# return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) | |
# | |
# | |
# def einsum_op(q, k, v): | |
# if q.device.type == 'cuda': | |
# return einsum_op_cuda(q, k, v) | |
# | |
# if q.device.type == 'mps': | |
# if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18: | |
# return einsum_op_mps_v1(q, k, v) | |
# return einsum_op_mps_v2(q, k, v) | |
# | |
# # Smaller slices are faster due to L2/L3/SLC caches. | |
# # Tested on i7 with 8MB L3 cache. | |
# return einsum_op_tensor_mem(q, k, v, 32) | |
# | |
# | |
# def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None, **kwargs): | |
# h = self.heads | |
# | |
# q = self.to_q(x) | |
# context = default(context, x) | |
# | |
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
# k = self.to_k(context_k) | |
# v = self.to_v(context_v) | |
# del context, context_k, context_v, x | |
# | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float() | |
# | |
# with devices.without_autocast(disable=not shared.opts.upcast_attn): | |
# k = k * self.scale | |
# | |
# q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) | |
# r = einsum_op(q, k, v) | |
# r = r.to(dtype) | |
# return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) | |
# | |
# # -- End of code from https://github.com/invoke-ai/InvokeAI -- | |
# | |
# | |
# # Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1 | |
# # The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface | |
# def sub_quad_attention_forward(self, x, context=None, mask=None, **kwargs): | |
# assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor." | |
# | |
# h = self.heads | |
# | |
# q = self.to_q(x) | |
# context = default(context, x) | |
# | |
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
# k = self.to_k(context_k) | |
# v = self.to_v(context_v) | |
# del context, context_k, context_v, x | |
# | |
# q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) | |
# k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) | |
# v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) | |
# | |
# if q.device.type == 'mps': | |
# q, k, v = q.contiguous(), k.contiguous(), v.contiguous() | |
# | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k = q.float(), k.float() | |
# | |
# x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) | |
# | |
# x = x.to(dtype) | |
# | |
# x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) | |
# | |
# out_proj, dropout = self.to_out | |
# x = out_proj(x) | |
# x = dropout(x) | |
# | |
# return x | |
# | |
# | |
# def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True): | |
# bytes_per_token = torch.finfo(q.dtype).bits//8 | |
# batch_x_heads, q_tokens, _ = q.shape | |
# _, k_tokens, _ = k.shape | |
# qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens | |
# | |
# if chunk_threshold is None: | |
# if q.device.type == 'mps': | |
# chunk_threshold_bytes = 268435456 * (2 if platform.processor() == 'i386' else bytes_per_token) | |
# else: | |
# chunk_threshold_bytes = int(get_available_vram() * 0.7) | |
# elif chunk_threshold == 0: | |
# chunk_threshold_bytes = None | |
# else: | |
# chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram()) | |
# | |
# if kv_chunk_size_min is None and chunk_threshold_bytes is not None: | |
# kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2])) | |
# elif kv_chunk_size_min == 0: | |
# kv_chunk_size_min = None | |
# | |
# if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: | |
# # the big matmul fits into our memory limit; do everything in 1 chunk, | |
# # i.e. send it down the unchunked fast-path | |
# kv_chunk_size = k_tokens | |
# | |
# with devices.without_autocast(disable=q.dtype == v.dtype): | |
# return sub_quadratic_attention.efficient_dot_product_attention( | |
# q, | |
# k, | |
# v, | |
# query_chunk_size=q_chunk_size, | |
# kv_chunk_size=kv_chunk_size, | |
# kv_chunk_size_min = kv_chunk_size_min, | |
# use_checkpoint=use_checkpoint, | |
# ) | |
# | |
# | |
# def get_xformers_flash_attention_op(q, k, v): | |
# if not shared.cmd_opts.xformers_flash_attention: | |
# return None | |
# | |
# try: | |
# flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp | |
# fw, bw = flash_attention_op | |
# if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)): | |
# return flash_attention_op | |
# except Exception as e: | |
# errors.display_once(e, "enabling flash attention") | |
# | |
# return None | |
# | |
# | |
# def xformers_attention_forward(self, x, context=None, mask=None, **kwargs): | |
# h = self.heads | |
# q_in = self.to_q(x) | |
# context = default(context, x) | |
# | |
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
# k_in = self.to_k(context_k) | |
# v_in = self.to_v(context_v) | |
# | |
# q, k, v = (t.reshape(t.shape[0], t.shape[1], h, -1) for t in (q_in, k_in, v_in)) | |
# | |
# del q_in, k_in, v_in | |
# | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k, v = q.float(), k.float(), v.float() | |
# | |
# out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v)) | |
# | |
# out = out.to(dtype) | |
# | |
# b, n, h, d = out.shape | |
# out = out.reshape(b, n, h * d) | |
# return self.to_out(out) | |
# | |
# | |
# # Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py | |
# # The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface | |
# def scaled_dot_product_attention_forward(self, x, context=None, mask=None, **kwargs): | |
# batch_size, sequence_length, inner_dim = x.shape | |
# | |
# if mask is not None: | |
# mask = self.prepare_attention_mask(mask, sequence_length, batch_size) | |
# mask = mask.view(batch_size, self.heads, -1, mask.shape[-1]) | |
# | |
# h = self.heads | |
# q_in = self.to_q(x) | |
# context = default(context, x) | |
# | |
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
# k_in = self.to_k(context_k) | |
# v_in = self.to_v(context_v) | |
# | |
# head_dim = inner_dim // h | |
# q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2) | |
# k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2) | |
# v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2) | |
# | |
# del q_in, k_in, v_in | |
# | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k, v = q.float(), k.float(), v.float() | |
# | |
# # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# hidden_states = torch.nn.functional.scaled_dot_product_attention( | |
# q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False | |
# ) | |
# | |
# hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim) | |
# hidden_states = hidden_states.to(dtype) | |
# | |
# # linear proj | |
# hidden_states = self.to_out[0](hidden_states) | |
# # dropout | |
# hidden_states = self.to_out[1](hidden_states) | |
# return hidden_states | |
# | |
# | |
# def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None, **kwargs): | |
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False): | |
# return scaled_dot_product_attention_forward(self, x, context, mask) | |
# | |
# | |
# def cross_attention_attnblock_forward(self, x): | |
# h_ = x | |
# h_ = self.norm(h_) | |
# q1 = self.q(h_) | |
# k1 = self.k(h_) | |
# v = self.v(h_) | |
# | |
# # compute attention | |
# b, c, h, w = q1.shape | |
# | |
# q2 = q1.reshape(b, c, h*w) | |
# del q1 | |
# | |
# q = q2.permute(0, 2, 1) # b,hw,c | |
# del q2 | |
# | |
# k = k1.reshape(b, c, h*w) # b,c,hw | |
# del k1 | |
# | |
# h_ = torch.zeros_like(k, device=q.device) | |
# | |
# mem_free_total = get_available_vram() | |
# | |
# tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | |
# mem_required = tensor_size * 2.5 | |
# steps = 1 | |
# | |
# if mem_required > mem_free_total: | |
# steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
# | |
# slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
# for i in range(0, q.shape[1], slice_size): | |
# end = i + slice_size | |
# | |
# w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
# w2 = w1 * (int(c)**(-0.5)) | |
# del w1 | |
# w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) | |
# del w2 | |
# | |
# # attend to values | |
# v1 = v.reshape(b, c, h*w) | |
# w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
# del w3 | |
# | |
# h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
# del v1, w4 | |
# | |
# h2 = h_.reshape(b, c, h, w) | |
# del h_ | |
# | |
# h3 = self.proj_out(h2) | |
# del h2 | |
# | |
# h3 += x | |
# | |
# return h3 | |
# | |
# | |
# def xformers_attnblock_forward(self, x): | |
# try: | |
# h_ = x | |
# h_ = self.norm(h_) | |
# q = self.q(h_) | |
# k = self.k(h_) | |
# v = self.v(h_) | |
# b, c, h, w = q.shape | |
# q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k = q.float(), k.float() | |
# q = q.contiguous() | |
# k = k.contiguous() | |
# v = v.contiguous() | |
# out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v)) | |
# out = out.to(dtype) | |
# out = rearrange(out, 'b (h w) c -> b c h w', h=h) | |
# out = self.proj_out(out) | |
# return x + out | |
# except NotImplementedError: | |
# return cross_attention_attnblock_forward(self, x) | |
# | |
# | |
# def sdp_attnblock_forward(self, x): | |
# h_ = x | |
# h_ = self.norm(h_) | |
# q = self.q(h_) | |
# k = self.k(h_) | |
# v = self.v(h_) | |
# b, c, h, w = q.shape | |
# q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) | |
# dtype = q.dtype | |
# if shared.opts.upcast_attn: | |
# q, k, v = q.float(), k.float(), v.float() | |
# q = q.contiguous() | |
# k = k.contiguous() | |
# v = v.contiguous() | |
# out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False) | |
# out = out.to(dtype) | |
# out = rearrange(out, 'b (h w) c -> b c h w', h=h) | |
# out = self.proj_out(out) | |
# return x + out | |
# | |
# | |
# def sdp_no_mem_attnblock_forward(self, x): | |
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False): | |
# return sdp_attnblock_forward(self, x) | |
# | |
# | |
# def sub_quad_attnblock_forward(self, x): | |
# h_ = x | |
# h_ = self.norm(h_) | |
# q = self.q(h_) | |
# k = self.k(h_) | |
# v = self.v(h_) | |
# b, c, h, w = q.shape | |
# q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) | |
# q = q.contiguous() | |
# k = k.contiguous() | |
# v = v.contiguous() | |
# out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) | |
# out = rearrange(out, 'b (h w) c -> b c h w', h=h) | |
# out = self.proj_out(out) | |
# return x + out | |