File size: 7,471 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# from transformers import BertPreTrainedModel,BertConfig
# import torch.nn as nn
# import torch
# from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
# from transformers import XLMRobertaModel,XLMRobertaTokenizer
# from typing import Optional
# from modules import torch_utils
#
#
# class BertSeriesConfig(BertConfig):
#     def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
#
#         super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
#         self.project_dim = project_dim
#         self.pooler_fn = pooler_fn
#         self.learn_encoder = learn_encoder
#
# class RobertaSeriesConfig(XLMRobertaConfig):
#     def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
#         super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
#         self.project_dim = project_dim
#         self.pooler_fn = pooler_fn
#         self.learn_encoder = learn_encoder
#
#
# class BertSeriesModelWithTransformation(BertPreTrainedModel):
#
#     _keys_to_ignore_on_load_unexpected = [r"pooler"]
#     _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
#     config_class = BertSeriesConfig
#
#     def __init__(self, config=None, **kargs):
#         # modify initialization for autoloading
#         if config is None:
#             config = XLMRobertaConfig()
#             config.attention_probs_dropout_prob= 0.1
#             config.bos_token_id=0
#             config.eos_token_id=2
#             config.hidden_act='gelu'
#             config.hidden_dropout_prob=0.1
#             config.hidden_size=1024
#             config.initializer_range=0.02
#             config.intermediate_size=4096
#             config.layer_norm_eps=1e-05
#             config.max_position_embeddings=514
#
#             config.num_attention_heads=16
#             config.num_hidden_layers=24
#             config.output_past=True
#             config.pad_token_id=1
#             config.position_embedding_type= "absolute"
#
#             config.type_vocab_size= 1
#             config.use_cache=True
#             config.vocab_size= 250002
#             config.project_dim = 1024
#             config.learn_encoder = False
#         super().__init__(config)
#         self.roberta = XLMRobertaModel(config)
#         self.transformation = nn.Linear(config.hidden_size,config.project_dim)
#         # self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
#         self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
#         # self.pooler = lambda x: x[:,0]
#         # self.post_init()
#
#         self.has_pre_transformation = True
#         if self.has_pre_transformation:
#             self.transformation_pre = nn.Linear(config.hidden_size, config.project_dim)
#             self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
#         self.post_init()
#
#     def encode(self,c):
#         device = torch_utils.get_param(self).device
#         text = self.tokenizer(c,
#                         truncation=True,
#                         max_length=77,
#                         return_length=False,
#                         return_overflowing_tokens=False,
#                         padding="max_length",
#                         return_tensors="pt")
#         text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
#         text["attention_mask"] = torch.tensor(
#             text['attention_mask']).to(device)
#         features = self(**text)
#         return features['projection_state']
#
#     def forward(
#         self,
#         input_ids: Optional[torch.Tensor] = None,
#         attention_mask: Optional[torch.Tensor] = None,
#         token_type_ids: Optional[torch.Tensor] = None,
#         position_ids: Optional[torch.Tensor] = None,
#         head_mask: Optional[torch.Tensor] = None,
#         inputs_embeds: Optional[torch.Tensor] = None,
#         encoder_hidden_states: Optional[torch.Tensor] = None,
#         encoder_attention_mask: Optional[torch.Tensor] = None,
#         output_attentions: Optional[bool] = None,
#         return_dict: Optional[bool] = None,
#         output_hidden_states: Optional[bool] = None,
#     ) :
#         r"""
#         """
#
#         return_dict = return_dict if return_dict is not None else self.config.use_return_dict
#
#
#         outputs = self.roberta(
#             input_ids=input_ids,
#             attention_mask=attention_mask,
#             token_type_ids=token_type_ids,
#             position_ids=position_ids,
#             head_mask=head_mask,
#             inputs_embeds=inputs_embeds,
#             encoder_hidden_states=encoder_hidden_states,
#             encoder_attention_mask=encoder_attention_mask,
#             output_attentions=output_attentions,
#             output_hidden_states=True,
#             return_dict=return_dict,
#         )
#
#         # # last module outputs
#         # sequence_output = outputs[0]
#
#
#         # # project every module
#         # sequence_output_ln = self.pre_LN(sequence_output)
#
#         # # pooler
#         # pooler_output = self.pooler(sequence_output_ln)
#         # pooler_output = self.transformation(pooler_output)
#         # projection_state = self.transformation(outputs.last_hidden_state)
#
#         if self.has_pre_transformation:
#             sequence_output2 = outputs["hidden_states"][-2]
#             sequence_output2 = self.pre_LN(sequence_output2)
#             projection_state2 = self.transformation_pre(sequence_output2)
#
#             return {
#                 "projection_state": projection_state2,
#                 "last_hidden_state": outputs.last_hidden_state,
#                 "hidden_states": outputs.hidden_states,
#                 "attentions": outputs.attentions,
#             }
#         else:
#             projection_state = self.transformation(outputs.last_hidden_state)
#             return {
#                 "projection_state": projection_state,
#                 "last_hidden_state": outputs.last_hidden_state,
#                 "hidden_states": outputs.hidden_states,
#                 "attentions": outputs.attentions,
#             }
#
#
#         # return {
#         #     'pooler_output':pooler_output,
#         #     'last_hidden_state':outputs.last_hidden_state,
#         #     'hidden_states':outputs.hidden_states,
#         #     'attentions':outputs.attentions,
#         #     'projection_state':projection_state,
#         #     'sequence_out': sequence_output
#         # }
#
#
# class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
#     base_model_prefix = 'roberta'
#     config_class= RobertaSeriesConfig