File size: 7,544 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# import torch
# from packaging import version
# from einops import repeat
# import math
#
# from modules import devices
# from modules.sd_hijack_utils import CondFunc
#
#
# class TorchHijackForUnet:
#     """
#     This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
#     this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
#     """
#
#     def __getattr__(self, item):
#         if item == 'cat':
#             return self.cat
#
#         if hasattr(torch, item):
#             return getattr(torch, item)
#
#         raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
#
#     def cat(self, tensors, *args, **kwargs):
#         if len(tensors) == 2:
#             a, b = tensors
#             if a.shape[-2:] != b.shape[-2:]:
#                 a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
#
#             tensors = (a, b)
#
#         return torch.cat(tensors, *args, **kwargs)
#
#
# th = TorchHijackForUnet()
#
#
# # Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
# def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
#     """Always make sure inputs to unet are in correct dtype."""
#     if isinstance(cond, dict):
#         for y in cond.keys():
#             if isinstance(cond[y], list):
#                 cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
#             else:
#                 cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
#
#     with devices.autocast():
#         result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
#         if devices.unet_needs_upcast:
#             return result.float()
#         else:
#             return result
#
#
# # Monkey patch to create timestep embed tensor on device, avoiding a block.
# def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
#     """
#     Create sinusoidal timestep embeddings.
#     :param timesteps: a 1-D Tensor of N indices, one per batch element.
#                       These may be fractional.
#     :param dim: the dimension of the output.
#     :param max_period: controls the minimum frequency of the embeddings.
#     :return: an [N x dim] Tensor of positional embeddings.
#     """
#     if not repeat_only:
#         half = dim // 2
#         freqs = torch.exp(
#             -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
#         )
#         args = timesteps[:, None].float() * freqs[None]
#         embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
#         if dim % 2:
#             embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
#     else:
#         embedding = repeat(timesteps, 'b -> b d', d=dim)
#     return embedding
#
#
# # Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
# # Prevents a lot of unnecessary aten::copy_ calls
# def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
#     # note: if no context is given, cross-attention defaults to self-attention
#     if not isinstance(context, list):
#         context = [context]
#     b, c, h, w = x.shape
#     x_in = x
#     x = self.norm(x)
#     if not self.use_linear:
#         x = self.proj_in(x)
#     x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
#     if self.use_linear:
#         x = self.proj_in(x)
#     for i, block in enumerate(self.transformer_blocks):
#         x = block(x, context=context[i])
#     if self.use_linear:
#         x = self.proj_out(x)
#     x = x.view(b, h, w, c).permute(0, 3, 1, 2)
#     if not self.use_linear:
#         x = self.proj_out(x)
#     return x + x_in
#
#
# class GELUHijack(torch.nn.GELU, torch.nn.Module):
#     def __init__(self, *args, **kwargs):
#         torch.nn.GELU.__init__(self, *args, **kwargs)
#     def forward(self, x):
#         if devices.unet_needs_upcast:
#             return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
#         else:
#             return torch.nn.GELU.forward(self, x)
#
#
# ddpm_edit_hijack = None
# def hijack_ddpm_edit():
#     global ddpm_edit_hijack
#     if not ddpm_edit_hijack:
#         CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
#         CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
#         ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
#
#
# unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
# CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
#
# if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
#     CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
#     CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
#     CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
#
# first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
# first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
#
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
# CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
#
#
# def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
#     if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
#         dtype = torch.float32
#     else:
#         dtype = devices.dtype_unet
#     return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
#
#
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
# CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)