Spaces:
Runtime error
Runtime error
File size: 7,544 Bytes
ad93086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# import torch
# from packaging import version
# from einops import repeat
# import math
#
# from modules import devices
# from modules.sd_hijack_utils import CondFunc
#
#
# class TorchHijackForUnet:
# """
# This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
# this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
# """
#
# def __getattr__(self, item):
# if item == 'cat':
# return self.cat
#
# if hasattr(torch, item):
# return getattr(torch, item)
#
# raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
#
# def cat(self, tensors, *args, **kwargs):
# if len(tensors) == 2:
# a, b = tensors
# if a.shape[-2:] != b.shape[-2:]:
# a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
#
# tensors = (a, b)
#
# return torch.cat(tensors, *args, **kwargs)
#
#
# th = TorchHijackForUnet()
#
#
# # Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
# def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
# """Always make sure inputs to unet are in correct dtype."""
# if isinstance(cond, dict):
# for y in cond.keys():
# if isinstance(cond[y], list):
# cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
# else:
# cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
#
# with devices.autocast():
# result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
# if devices.unet_needs_upcast:
# return result.float()
# else:
# return result
#
#
# # Monkey patch to create timestep embed tensor on device, avoiding a block.
# def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
# """
# Create sinusoidal timestep embeddings.
# :param timesteps: a 1-D Tensor of N indices, one per batch element.
# These may be fractional.
# :param dim: the dimension of the output.
# :param max_period: controls the minimum frequency of the embeddings.
# :return: an [N x dim] Tensor of positional embeddings.
# """
# if not repeat_only:
# half = dim // 2
# freqs = torch.exp(
# -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
# )
# args = timesteps[:, None].float() * freqs[None]
# embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
# if dim % 2:
# embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
# else:
# embedding = repeat(timesteps, 'b -> b d', d=dim)
# return embedding
#
#
# # Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
# # Prevents a lot of unnecessary aten::copy_ calls
# def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
# # note: if no context is given, cross-attention defaults to self-attention
# if not isinstance(context, list):
# context = [context]
# b, c, h, w = x.shape
# x_in = x
# x = self.norm(x)
# if not self.use_linear:
# x = self.proj_in(x)
# x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
# if self.use_linear:
# x = self.proj_in(x)
# for i, block in enumerate(self.transformer_blocks):
# x = block(x, context=context[i])
# if self.use_linear:
# x = self.proj_out(x)
# x = x.view(b, h, w, c).permute(0, 3, 1, 2)
# if not self.use_linear:
# x = self.proj_out(x)
# return x + x_in
#
#
# class GELUHijack(torch.nn.GELU, torch.nn.Module):
# def __init__(self, *args, **kwargs):
# torch.nn.GELU.__init__(self, *args, **kwargs)
# def forward(self, x):
# if devices.unet_needs_upcast:
# return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
# else:
# return torch.nn.GELU.forward(self, x)
#
#
# ddpm_edit_hijack = None
# def hijack_ddpm_edit():
# global ddpm_edit_hijack
# if not ddpm_edit_hijack:
# CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
# ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
#
#
# unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
# CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
#
# if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
# CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
# CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
# CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
#
# first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
# first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
#
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
# CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
#
#
# def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
# if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
# dtype = torch.float32
# else:
# dtype = devices.dtype_unet
# return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
#
#
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
# CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
|