import os import gradio as gr from pathlib import Path from diffusers import StableDiffusionPipeline from PIL import Image from huggingface_hub import notebook_login from huggingface_hub import notebook_login #if not (Path.home()/'.huggingface'/'token').exists(): #token = os.environ.get("HUGGING_FACE_HUB_TOKEN") token = "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" import utils.shared_utils as st import torch, logging logging.disable(logging.WARNING) torch.cuda.empty_cache() torch.manual_seed(3407) from torch import autocast from contextlib import nullcontext torch.backends.cudnn.benchmark = True model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" if torch.cuda.is_available() else "cpu" context = autocast if device == "cuda" else nullcontext # pipe = StableDiffusionPipeline.from_pretrained(model_id,use_auth_token=token).to(device) # # # def infer_original(prompt,samples): # with context(device): # images = pipe(samples*[prompt], guidance_scale=7.5).images # return images # Apply the transformations needed def select_input(input_img,webcm_img): if input_img is None: img= webcm_img else: img=input_img return img def infer(prompt,samples): images= [] selections = ["Img_{}".format(str(i+1).zfill(2)) for i in range(samples)] with context(device): for _ in range(samples): back_img = st.stableDiffusionAPICall(prompt) images.append(back_img) return images # def newstyleimage(choice): # print(choice) # if choice == "yes": # return gr.Image.update(visible=True,interactive=True) # return def styleimpose(final_input_img, ref_img): return st.superimpose(final_input_img, ref_img)[0] def change_bg_option(choice): if choice == "I have an Image": return gr.Image(shape=(800, 800)) elif choice == "Generate one for me": return gr.update(lines=8, visible=True, value="Please enter a text prompt") else: return gr.update(visible=False) # TEXT title = "FSDL- One-Shot, Green-Screen, Composition-Transfer" DEFAULT_TEXT = "Photorealistic scenery of bookshelf in a room" description = """
[PAPER - Documentation]
Instructions

With this app, you can generate a suitable background image to overlay your portrait!
You have several ways to set how your final auto-edited image will look like:

After deciding, just hit "Select" to ensure those images are processed.
The final image will be available for download
Enjoy!

""" running = """ ### Instructions for running the 3 S's in sequence * **Superimpose** - This button allows you to isolate the foreground from your image and overlay it on the background. Remove background using alpha matting * **Style-Transfer** - This button transfer the style from your original image to re-map your new background realistically. Uses Nvidia FastPhotoStyle * **Smoothing** - Given than image resolutions and clarity can be an issue, this smoothing button makes your final image crisp after the stylization transfer. Fair warning - this last process can take 5-10 mins """ style_message = """ This image above will be the content image. By default, the style will be copied from the input foreground image. If you have a different image in mind, would you like to upload a different image? Click yes to add a new style reference image""" demo = gr.Blocks() with demo: gr.Markdown("

" + title + "

") with gr.Box(): gr.Markdown(description) # First row - Inputs with gr.Row(scale=1): with gr.Column(): with gr.Tabs(): with gr.TabItem("Upload "): input_img = gr.Image(shape=(800, 800), interactive=True, label="You") with gr.TabItem("Webcam Capture"): webcm_img = gr.Image(source="webcam", streaming=True, shape=(800, 800), interactive=True) inp_select_btn = gr.Button("Select") with gr.Column(): with gr.Tabs(): with gr.TabItem("Upload"): bgm_img = gr.Image(shape=(800, 800), type="pil", interactive=True, label="The Background") bgm_select_btn = gr.Button("Select") with gr.TabItem("Generate via Text Prompt"): with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): text = gr.Textbox(lines=7, placeholder="Enter your prompt to generate a background image... something like - Photorealistic scenery of bookshelf in a room") samples = gr.Slider(label="Number of Images", minimum=1, maximum=5, value=2, step=1) btn = gr.Button("Generate images",variant="primary") gallery = gr.Gallery(label="Generated images", show_label=True).style(grid=(1, 3), height="auto") # image_options = gr.Radio(label="Pick", interactive=True, choices=None, type="value") text.submit(infer, inputs=[text, samples], outputs=gallery) btn.click(infer, inputs=[text, samples], outputs=gallery, show_progress=True, status_tracker=None) # Second Row - Backgrounds with gr.Row(scale=1): with gr.Column(): final_input_img = gr.Image(shape=(800, 800), type="pil", label="Foreground") with gr.Column(): final_back_img = gr.Image(shape=(800, 800), type="pil", label="Background", interactive=True) bgm_select_btn.click(fn=lambda x: x, inputs=bgm_img, outputs=final_back_img) inp_select_btn.click(select_input, [input_img, webcm_img], final_input_img) with gr.Row(scale=1): with gr.Box(): gr.Markdown(running) with gr.Row(scale=1): with gr.Box(): with gr.Column(scale=1): supimp_btn = gr.Button("SuperImpose") overlay_img = gr.Image(shape=(800, 800), label="Overlay", type="pil") gr.Markdown(style_message) #img_choice = gr.Radio(choices= ["yes"],interactive=True,type='value') ref_img = gr.Image(shape=(800, 800),label="Style Reference", type="pil",interactive=True) ref_img2 = gr.Image(shape=(800, 800), label="Style Reference", type="pil", interactive=True, visible=False) ref_btn = gr.Button("Use this style") ref_btn.click(fn=styleimpose, inputs=[final_input_img, ref_img], outputs=[ref_img2]) with gr.Column(scale=1): style_btn = gr.Button("Composition-Transfer",variant="primary") style_img = gr.Image(shape=(800, 800),label="Style-Transfer Image",type="pil") with gr.Column(scale=1): submit_btn = gr.Button("Smoothen",variant="primary") output_img = gr.Image(shape=(800, 800),label="FinalSmoothened Image",type="pil") supimp_btn.click(fn=st.superimpose, inputs=[final_input_img, final_back_img], outputs=[overlay_img,ref_img]) style_btn.click(fn=st.style_transfer, inputs=[overlay_img,ref_img2], outputs=[style_img]) submit_btn.click(fn=st.smoother, inputs=[style_img,overlay_img], outputs=[output_img]) gr.Examples([["profile_new.png","back_img.png"]],[final_input_img, final_back_img]) gr.Examples([["profile_new.png","bedroom with a bookshelf in the background and a small stool to sit on the right side, photorealistic",3]], [final_input_img,text,samples]) demo.queue() demo.launch()