import os
import gradio as gr
from pathlib import Path
from diffusers import StableDiffusionPipeline
from PIL import Image
from huggingface_hub import notebook_login
from huggingface_hub import notebook_login
#if not (Path.home()/'.huggingface'/'token').exists():
#token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
token = "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"
import utils.shared_utils as st
import torch, logging
logging.disable(logging.WARNING)
torch.cuda.empty_cache()
torch.manual_seed(3407)
from torch import autocast
from contextlib import nullcontext
torch.backends.cudnn.benchmark = True
model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda" if torch.cuda.is_available() else "cpu"
context = autocast if device == "cuda" else nullcontext
# pipe = StableDiffusionPipeline.from_pretrained(model_id,use_auth_token=token).to(device)
#
#
# def infer_original(prompt,samples):
# with context(device):
# images = pipe(samples*[prompt], guidance_scale=7.5).images
# return images
# Apply the transformations needed
def select_input(input_img,webcm_img):
if input_img is None:
img= webcm_img
else:
img=input_img
return img
def infer(prompt,samples):
images= []
selections = ["Img_{}".format(str(i+1).zfill(2)) for i in range(samples)]
with context(device):
for _ in range(samples):
back_img = st.stableDiffusionAPICall(prompt)
images.append(back_img)
return images
# def newstyleimage(choice):
# print(choice)
# if choice == "yes":
# return gr.Image.update(visible=True,interactive=True)
# return
def styleimpose(final_input_img, ref_img):
return st.superimpose(final_input_img, ref_img)[0]
def change_bg_option(choice):
if choice == "I have an Image":
return gr.Image(shape=(800, 800))
elif choice == "Generate one for me":
return gr.update(lines=8, visible=True, value="Please enter a text prompt")
else:
return gr.update(visible=False)
# TEXT
title = "FSDL- One-Shot, Green-Screen, Composition-Transfer"
DEFAULT_TEXT = "Photorealistic scenery of bookshelf in a room"
description = """
[PAPER - Documentation]
Instructions
With this app, you can generate a suitable background image to overlay your portrait!
You have several ways to set how your final auto-edited image will look like:
- Use the "Inputs" tab to either upload an image from your device OR allow the use of your webcam to capture
- Use the "Background Image Inputs" to upload your own background. OR
- Use the "Text prompt" tab to generate a satisfactory background image using Stable Diffusion.
After deciding, just hit "Select" to ensure those images are processed.
The final image will be available for download
Enjoy!
"""
running = """
### Instructions for running the 3 S's in sequence
* **Superimpose** - This button allows you to isolate the foreground from your image and overlay it on the background. Remove background using alpha matting
* **Style-Transfer** - This button transfer the style from your original image to re-map your new background realistically. Uses Nvidia FastPhotoStyle
* **Smoothing** - Given than image resolutions and clarity can be an issue, this smoothing button makes your final image crisp after the stylization transfer. Fair warning - this last process can take 5-10 mins
"""
style_message = """
This image above will be the content image. By default, the style will be copied from the input foreground image.
If you have a different image in mind, would you like to upload a different image?
Click yes to add a new style reference image"""
demo = gr.Blocks()
with demo:
gr.Markdown("" + title + "
")
with gr.Box():
gr.Markdown(description)
# First row - Inputs
with gr.Row(scale=1):
with gr.Column():
with gr.Tabs():
with gr.TabItem("Upload "):
input_img = gr.Image(shape=(800, 800), interactive=True, label="You")
with gr.TabItem("Webcam Capture"):
webcm_img = gr.Image(source="webcam", streaming=True, shape=(800, 800), interactive=True)
inp_select_btn = gr.Button("Select")
with gr.Column():
with gr.Tabs():
with gr.TabItem("Upload"):
bgm_img = gr.Image(shape=(800, 800), type="pil", interactive=True, label="The Background")
bgm_select_btn = gr.Button("Select")
with gr.TabItem("Generate via Text Prompt"):
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(lines=7,
placeholder="Enter your prompt to generate a background image... something like - Photorealistic scenery of bookshelf in a room")
samples = gr.Slider(label="Number of Images", minimum=1, maximum=5, value=2, step=1)
btn = gr.Button("Generate images",variant="primary")
gallery = gr.Gallery(label="Generated images", show_label=True).style(grid=(1, 3), height="auto")
# image_options = gr.Radio(label="Pick", interactive=True, choices=None, type="value")
text.submit(infer, inputs=[text, samples], outputs=gallery)
btn.click(infer, inputs=[text, samples], outputs=gallery, show_progress=True, status_tracker=None)
# Second Row - Backgrounds
with gr.Row(scale=1):
with gr.Column():
final_input_img = gr.Image(shape=(800, 800), type="pil", label="Foreground")
with gr.Column():
final_back_img = gr.Image(shape=(800, 800), type="pil", label="Background", interactive=True)
bgm_select_btn.click(fn=lambda x: x, inputs=bgm_img, outputs=final_back_img)
inp_select_btn.click(select_input, [input_img, webcm_img], final_input_img)
with gr.Row(scale=1):
with gr.Box():
gr.Markdown(running)
with gr.Row(scale=1):
with gr.Box():
with gr.Column(scale=1):
supimp_btn = gr.Button("SuperImpose")
overlay_img = gr.Image(shape=(800, 800), label="Overlay", type="pil")
gr.Markdown(style_message)
#img_choice = gr.Radio(choices= ["yes"],interactive=True,type='value')
ref_img = gr.Image(shape=(800, 800),label="Style Reference", type="pil",interactive=True)
ref_img2 = gr.Image(shape=(800, 800), label="Style Reference", type="pil", interactive=True, visible=False)
ref_btn = gr.Button("Use this style")
ref_btn.click(fn=styleimpose, inputs=[final_input_img, ref_img], outputs=[ref_img2])
with gr.Column(scale=1):
style_btn = gr.Button("Composition-Transfer",variant="primary")
style_img = gr.Image(shape=(800, 800),label="Style-Transfer Image",type="pil")
with gr.Column(scale=1):
submit_btn = gr.Button("Smoothen",variant="primary")
output_img = gr.Image(shape=(800, 800),label="FinalSmoothened Image",type="pil")
supimp_btn.click(fn=st.superimpose, inputs=[final_input_img, final_back_img], outputs=[overlay_img,ref_img])
style_btn.click(fn=st.style_transfer, inputs=[overlay_img,ref_img2], outputs=[style_img])
submit_btn.click(fn=st.smoother, inputs=[style_img,overlay_img], outputs=[output_img])
gr.Examples([["profile_new.png","back_img.png"]],[final_input_img, final_back_img])
gr.Examples([["profile_new.png","bedroom with a bookshelf in the background and a small stool to sit on the right side, photorealistic",3]], [final_input_img,text,samples])
demo.queue()
demo.launch()