Spaces:
Build error
Build error
File size: 9,169 Bytes
9d8d63c 4158574 9d8d63c ba1a06e ab49b72 4158574 95d2d6d 4158574 9d8d63c 4158574 9d8d63c 4158574 9d8d63c 0351b16 545bebe ea3f597 4650aad ea3f597 4650aad ea3f597 9d8d63c 4158574 4650aad 4158574 9d8d63c 4158574 9d8d63c 4158574 e71e678 4158574 60e148f 4158574 9d8d63c 4158574 9d8d63c 4158574 512aa4c 4158574 9d8d63c 512aa4c 9d8d63c 512aa4c 9d8d63c 4158574 337e469 4158574 337e469 4158574 512aa4c 4158574 576ceee 4158574 4650aad 4158574 9d8d63c 512aa4c 9d8d63c 512aa4c 21ddb3c 512aa4c 4158574 512aa4c 21ddb3c 4158574 512aa4c 2128d20 0351b16 7f88488 4158574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import gradio as gr
from pathlib import Path
from diffusers import StableDiffusionPipeline
from PIL import Image
from huggingface_hub import notebook_login
from huggingface_hub import notebook_login
#if not (Path.home()/'.huggingface'/'token').exists():
#token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
token = os.environ.get('token')
import utils.shared_utils as st
import torch, logging
logging.disable(logging.WARNING)
torch.cuda.empty_cache()
torch.manual_seed(3407)
from torch import autocast
from contextlib import nullcontext
torch.backends.cudnn.benchmark = True
model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda" if torch.cuda.is_available() else "cpu"
context = autocast if device == "cuda" else nullcontext
pipe = StableDiffusionPipeline.from_pretrained(model_id,revision="fp16", torch_dtype=torch.float16,use_auth_token=token).to(device)
def infer(prompt,samples):
images=[]
with context(device):
for _ in range(samples):
image = pipe([prompt],num_inference_steps=50, guidance_scale=7.5, height=400, width=400).images[0]
images.append(image)
return images
# Apply the transformations needed
def select_input(input_img,webcm_img):
if input_img is None:
img= webcm_img
else:
img=input_img
return img
# def infer(prompt,samples):
# images= []
# with context(device):
# for _ in range(samples):
# back_img = st.stableDiffusionAPICall(prompt)
# images.append(back_img)
# return images
# def newstyleimage(choice):
# print(choice)
# if choice == "yes":
# return gr.Image.update(visible=True,interactive=True)
# return
def styleimpose(final_input_img, ref_img):
return st.superimpose(final_input_img, ref_img)[0]
def change_bg_option(choice):
if choice == "I have an Image":
return gr.Image(shape=(800, 800))
elif choice == "Generate one for me":
return gr.update(lines=8, visible=True, value="Please enter a text prompt")
else:
return gr.update(visible=False)
# TEXT
title = "Green-Screen Image Composition-Transfer"
DEFAULT_TEXT = "Photorealistic scenery of bookshelf in a room"
description = """
<center><a href="https://docs.google.com/document/d/1fde8XKIMT1nNU72859ytd2c58LFBxepS3od9KFBrJbM/edit?usp=sharing">[PAPER - Abstract]</a>|<a href="https://docs.google.com/presentation/d/1baE6sF1vvb-mRC0rIvLfCk4MlHwtXfodBqHEmr6wnwk/edit?usp=sharing">[POSTER]</a> </center>
<details>
<summary><b>Instructions</b></summary>
<p style="margin-top: -3px;">With this app, you can generate a suitable background image to overlay your portrait!<br />You have several ways to set how your final auto-edited image will look like:<br /></p>
<ul style="margin-top: -20px;margin-bottom: -15px;">
<li style="margin-bottom: -10px;margin-left: 20px;">Use the "<i>Inputs</i>" tab to either upload an image from your device OR allow the use of your webcam to capture</li>
<li style="margin-left: 20px;">Use the "<i>Background Image Inputs</i>" to upload your own background. OR</li>
<li style="margin-left: 20px;">Use the "<i>Text prompt</i>" tab to generate a satisfactory background image using Stable Diffusion.</li>
</ul>
<p>After deciding, just hit "<i>Select</i>" to ensure those images are processed.<br />The final image will be available for download <br /> <b>Enjoy!<b><p>
</details>
"""
running = """
### Instructions for running the 3 S's in sequence
* **Superimpose** - This button allows you to isolate the foreground from your image and overlay it on the background. Remove background using alpha matting
* **Style-Transfer** - This button transfers the style from your original image to re-map your new background realistically. Uses Nvidia FastPhotoStyle
* **Smoothing** - Given that the image resolutions and clarity can be an issue, this smoothing button makes your final image, crisp after the stylization transfer. Fair warning - this last process can take 5-10 mins
"""
style_message = """
This image above will be the content image. By default, a good choice for the style is input foreground image.
If you have a different image in mind, you can remove the default and upload it here.
Ideally transfer works better if your input foreground is also superimposed on the style image, so you may want to create it using the same steps
."""
demo = gr.Blocks()
with demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown(description)
with gr.Column():
gr.Image("capture.png")
# First row - Inputs
with gr.Row(scale=1):
with gr.Column():
with gr.Tabs():
with gr.TabItem("Upload "):
input_img = gr.Image(shape=(800, 800), interactive=True, label="You")
with gr.TabItem("Webcam Capture"):
webcm_img = gr.Image(source="webcam", streaming=True, shape=(800, 800), interactive=True)
inp_select_btn = gr.Button("Select")
with gr.Column():
with gr.Tabs():
with gr.TabItem("Upload"):
bgm_img = gr.Image(shape=(800, 800), type="pil", interactive=True, label="The Background")
bgm_select_btn = gr.Button("Select")
with gr.TabItem("Generate via Text Prompt"):
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(lines=7, label= "Prompt",
placeholder="Enter your prompt to generate a background image... something like - Photorealistic scenery of bookshelf in a room")
samples = gr.Slider(label="Number of Images", minimum=1, maximum=5, value=2, step=1)
btn = gr.Button("Generate images",variant="primary")
gallery = gr.Gallery(label="Generated images", show_label=True).style(grid=(1, 3), height="auto")
# image_options = gr.Radio(label="Pick", interactive=True, choices=None, type="value")
text.submit(infer, inputs=[text, samples], outputs=gallery)
btn.click(infer, inputs=[text, samples], outputs=gallery, show_progress=True, status_tracker=None)
# Second Row - Backgrounds
with gr.Row(scale=1):
with gr.Column():
final_input_img = gr.Image(shape=(800, 800), type="pil", label="Foreground")
with gr.Column():
final_back_img = gr.Image(shape=(800, 800), type="pil", label="Background", interactive=True)
bgm_select_btn.click(fn=lambda x: x, inputs=bgm_img, outputs=final_back_img)
inp_select_btn.click(select_input, [input_img, webcm_img], final_input_img)
with gr.Row(scale=1):
with gr.Box():
gr.Markdown(running)
with gr.Row(scale=1):
with gr.Box():
with gr.Column(scale=1):
supimp_btn = gr.Button("SuperImpose")
overlay_img = gr.Image(shape=(800, 800), label="Overlay/Content Image", type="pil")
gr.Markdown(style_message)
#img_choice = gr.Radio(choices= ["yes"],interactive=True,type='value')
ref_img = gr.Image(shape=(800, 800),label="Style Reference Image", type="pil",interactive=True)
# ref_img2 = gr.Image(shape=(800, 800), label="Style Reference", type="pil", interactive=True, visible=False)
# ref_btn = gr.Button("Use this style",variant="primary")
#
# ref_btn.click(fn=styleimpose, inputs=[final_input_img, ref_img], outputs=[ref_img])
with gr.Column(scale=1):
style_btn = gr.Button("Composition-Transfer",variant="primary")
style_img = gr.Image(shape=(800, 800),label="Style-Transfer Image",type="pil")
with gr.Column(scale=1):
submit_btn = gr.Button("Smoothen",variant="primary")
output_img = gr.Image(shape=(800, 800),label="FinalSmoothened Image",type="pil")
supimp_btn.click(fn=st.superimpose, inputs=[final_input_img, final_back_img], outputs=[overlay_img,ref_img])
style_btn.click(fn=st.style_transfer, inputs=[overlay_img,ref_img], outputs=[style_img])
submit_btn.click(fn=st.smoother, inputs=[style_img,overlay_img], outputs=[output_img])
gr.Examples(examples=[["profile_new.png","back_img.png"]], label="AlphaMatting- Remove BG",
inputs=[final_input_img, final_back_img], outputs=[overlay_img])
gr.Examples(examples=[["profile_new.png",
"bedroom with a bookshelf in the background and a small stool to sit on the right side, photorealistic",
3]],inputs= [final_input_img,text,samples], label="Text2Img - Stable Diffisuon")
gr.Examples(examples=[["cont_img.png","ref_img.png"]],inputs=[overlay_img, ref_img], label = "Nvidia - FastPhotoStyle")
demo.queue(concurrency_count=40, max_size=20)
demo.launch(enable_queue=True,max_threads=150)
|