import streamlit as st
import pandas as pd
import plotly.express as px
from huggingface_hub import HfApi
import io
from datetime import datetime, timedelta
import time
import pyarrow as pa
import pyarrow.parquet as pq
import math
import re
import pyarrow.csv as csv
from concurrent.futures import ThreadPoolExecutor, as_completed
# Set page config for a wider layout and custom theme
st.set_page_config(layout="wide", page_title="Job Listings Dashboard")
# Custom CSS for black background and styling
st.markdown("""
""", unsafe_allow_html=True)
st.markdown("""
""", unsafe_allow_html=True)
# Hugging Face setup
HF_TOKEN = st.secrets["HF_TOKEN"]
HF_USERNAME = st.secrets["HF_USERNAME"]
DATASET_NAME = "jobeasz"
@st.cache_data(ttl=3600)
def load_and_concat_data():
api = HfApi()
dataset_files = api.list_repo_files(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", repo_type="dataset")
csv_files = [file for file in dataset_files if file.endswith('.csv')]
all_data = []
for file in csv_files:
try:
file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
# Use PyArrow to read CSV
read_options = csv.ReadOptions(column_names=[
'site', 'job_url', 'title', 'company', 'location',
'job_type', 'date_posted', 'is_remote', 'company_url'
])
parse_options = csv.ParseOptions(delimiter=',')
convert_options = csv.ConvertOptions(
timestamp_parsers=['%Y-%m-%d']
)
table = csv.read_csv(file_content, read_options=read_options, parse_options=parse_options, convert_options=convert_options)
all_data.append(table)
except Exception as e:
print(f"Error processing file {file}: {str(e)}")
if not all_data:
return pa.Table.from_pandas(pd.DataFrame())
# Concatenate all tables
concatenated_table = pa.concat_tables(all_data)
# Filter for 2024 data
mask = pc.year(concatenated_table['date_posted']) == 2024
filtered_table = concatenated_table.filter(mask)
# Convert titles and company names to lowercase
filtered_table = filtered_table.set_column(
filtered_table.schema.get_field_index('title'),
'title',
pc.utf8_lower(filtered_table['title'])
)
filtered_table = filtered_table.set_column(
filtered_table.schema.get_field_index('company'),
'company',
pc.utf8_lower(filtered_table['company'])
)
# Clean location
def clean_location(location):
if location is None:
return None
location = location.lower()
return re.sub(r',\s*(us|usa)$', '', location)
cleaned_locations = pc.map(filtered_table['location'], clean_location)
filtered_table = filtered_table.set_column(
filtered_table.schema.get_field_index('location'),
'location',
cleaned_locations
)
# Remove duplicates
filtered_table = filtered_table.group_by(filtered_table.column_names).aggregate([])
# Convert to pandas DataFrame for compatibility with the rest of your code
filtered_df = filtered_table.to_pandas()
return filtered_df
@st.cache_data()
def get_unique_values(df):
return {
'companies': df['company'].unique(),
'locations': df['location'].unique(),
'job_types': df['job_type'].unique(),
'Role_Name': df['title'].unique(),
'Date_posted': df['date_posted'].unique()
}
@st.cache_data
def prepare_dashboard_data(df):
top_companies = df['company'].value_counts().head(10)
top_locations = df['location'].value_counts().head(10)
top_job_titles = df['title'].value_counts().head(20)
df_by_date = df.groupby('date_posted').size().reset_index(name='count')
return top_companies, top_locations, top_job_titles, df_by_date
def create_chart(data, _x, y, title, color_sequence):
fig = px.bar(data, x=_x, y=y, title=title, color_discrete_sequence=color_sequence)
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF')
return fig
def create_time_series(df, time_unit='day'):
if time_unit == 'week':
# Group by week and year
df_by_date = df.groupby(df['date_posted'].dt.to_period('W')).size().reset_index(name='count')
df_by_date['date_posted'] = df_by_date['date_posted'].dt.to_timestamp()
else:
# Keep daily grouping as before
df_by_date = df.groupby('date_posted').size().reset_index(name='count')
fig = px.line(df_by_date, x='date_posted', y='count', title="Job Postings Over Time", color_discrete_sequence=['#4e79a7'])
fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font_color='#FFFFFF',
xaxis_title="Date",
yaxis_title="Number of Job Postings"
)
# Adjust x-axis ticks for weekly view
if time_unit == 'week':
fig.update_xaxes(
dtick="W1",
tickformat="%d %b %Y",
ticklabelmode="period"
)
return fig
def display_dashboard(df):
top_companies, top_locations, top_job_titles, df_by_date = prepare_dashboard_data(df)
today = datetime.now().date()
jobs_today = df[df['date_posted'].dt.date == today].shape[0]
col1, col2 = st.columns(2)
with col1:
st.subheader("Job Postings Overview")
st.metric("Total Job Postings", len(df))
st.metric("Unique Companies", df['company'].nunique())
st.metric("Job Postings Today", jobs_today)
min_date = df['date_posted'].min().date()
max_date = df['date_posted'].max().date()
st.write(f"Job postings from {min_date} to {max_date}")
with col2:
fig = create_chart(top_companies, top_companies.index, top_companies.values, "Top 10 Companies", ['#4e79a7'])
st.plotly_chart(fig, use_container_width=True)
# Job Postings Over Time Chart
fig_time_series = create_time_series(df)
st.plotly_chart(fig_time_series, use_container_width=True)
col3, col4 = st.columns(2)
with col3:
fig = create_chart(top_locations, top_locations.index, top_locations.values, "Top 10 Locations", ['#f28e2b'])
st.plotly_chart(fig, use_container_width=True)
with col4:
fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f'])
st.plotly_chart(fig, use_container_width=True)
@st.cache_data
def filter_dataframe(df, companies, locations, job_types,Role_Name,Date_posted):
filtered_df = df
if companies:
filtered_df = filtered_df[filtered_df['company'].isin(companies)]
if locations:
filtered_df = filtered_df[filtered_df['location'].isin(locations)]
if job_types:
filtered_df = filtered_df[filtered_df['job_type'].isin(job_types)]
if Role_Name:
filtered_df = filtered_df[filtered_df['title'].isin(Role_Name)]
if Date_posted:
filtered_df = filtered_df[filtered_df['date_posted'].isin(Date_posted)]
return filtered_df
def display_data_explorer(df):
st.subheader("Data Explorer")
show_all = st.radio("Display", ("All Data", "Filtered Data"))
if show_all == "Filtered Data":
unique_values = get_unique_values(df)
col1, col2, col3, col4,col5 = st.columns(5)
with col1:
companies = st.multiselect("Select Companies", options=unique_values['companies'])
with col2:
locations = st.multiselect("Select Locations", options=unique_values['locations'])
with col3:
job_types = st.multiselect("Select Job Types", options=unique_values['job_types'])
with col4:
Role_Name = st.multiselect("Select Role Types", options=unique_values['Role_Name'])
with col5:
Date_posted = st.multiselect("Select Date Posted", options=unique_values['Date_posted'])
filtered_df = filter_dataframe(df, companies, locations, job_types, Role_Name,Date_posted)
else:
filtered_df = df
st.write(f"Showing {len(filtered_df)} job listings")
# Pagination
items_per_page = 15
num_pages = math.ceil(len(filtered_df) / items_per_page)
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
page = st.number_input("Page", min_value=1, max_value=num_pages, value=1)
start_idx = (page - 1) * items_per_page
end_idx = start_idx + items_per_page
page_df = filtered_df.iloc[start_idx:end_idx]
def make_clickable(url):
return f'Link'
page_df['job_url'] = page_df['job_url'].apply(make_clickable)
page_df['company_url'] = page_df['company_url'].apply(make_clickable)
st.write(page_df.to_html(escape=False, index=False), unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
st.write(f"Page {page} of {num_pages}")
def display_about_page():
st.markdown("""
## What is this application?
The Job Listings Dashboard is a powerful tool designed to provide insights into the job market. It offers a comprehensive view of job postings, allowing users to explore trends, top companies, locations, and job titles.
### Key Features:
- **Interactive Dashboard**: Visualize job market trends with dynamic charts and graphs.
- **Data Explorer**: Dive deep into individual job listings with advanced filtering options.
- **Real-time Data**: Fetch the latest job data from our Hugging Face dataset.
## How to use this application
### Dashboard
1. Navigate to the Dashboard using the sidebar.
2. View overall statistics such as total job postings, unique companies, and today's postings.
3. Explore interactive charts showing:
- Top companies hiring
- Job postings over time
- Top locations for job opportunities
- Most common job titles
### Data Explorer
1. Switch to the Data Explorer using the sidebar.
2. Choose between viewing all data or applying filters.
3. Use the multi-select dropdowns to filter by:
- Companies
- Locations
- Job Types
4. Browse the filtered job listings table.
5. Click on job or company links to view more details on the original posting site.
## Data Source
This application fetches data from my Private dataset which scrapes data from varoious job hosting portal and the data gets updated daily.
## Contact
For questions, feedback, or collaboration opportunities, feel free to reach out:
- LinkedIn: [Nihar Palem](https://www.linkedin.com/in/nihar-palem-1b955a183/)
""")
# Add a clickable LinkedIn button
linkedin_url = "https://www.linkedin.com/in/nihar-palem-1b955a183/"
st.markdown(f"""
""", unsafe_allow_html=True)
def main():
st.title("Job Easz")
df = load_and_concat_data()
if df.empty:
st.error("No data available. Please check your dataset.")
return
# Sidebar for navigation
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Dashboard", "Data Explorer","About"])
if page == "Dashboard":
display_dashboard(df)
elif page == "Data Explorer":
display_data_explorer(df)
elif page == "About":
display_about_page()
if __name__ == "__main__":
main()