import streamlit as st import pandas as pd import plotly.express as px from huggingface_hub import HfApi import io from datetime import datetime, timedelta import time import pyarrow as pa import pyarrow.parquet as pq import math import re import pyarrow.csv as csv from concurrent.futures import ThreadPoolExecutor, as_completed # Set page config for a wider layout and custom theme st.set_page_config(layout="wide", page_title="Job Listings Dashboard") # Custom CSS for black background and styling st.markdown(""" """, unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) # Hugging Face setup HF_TOKEN = st.secrets["HF_TOKEN"] HF_USERNAME = st.secrets["HF_USERNAME"] DATASET_NAME = "jobeasz" import pyarrow.feather as feather @st.cache_data(ttl=3600) def load_and_concat_data(): api = HfApi() dataset_files = api.list_repo_files(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", repo_type="dataset") feather_files = [file for file in dataset_files if file.endswith('.feather')] all_data = [] for file in feather_files: try: file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN) df = feather.read_feather(file_content) all_data.append(df) except Exception: pass # Silently skip files that can't be processed if not all_data: return pd.DataFrame() concatenated_df = pd.concat(all_data, ignore_index=True) columns_to_keep = [ 'site', 'job_url', 'title', 'company', 'location', 'job_type', 'date_posted', 'is_remote', 'company_url' ] filtered_df = concatenated_df[columns_to_keep].reset_index(drop=True) filtered_df['date_posted'] = pd.to_datetime(filtered_df['date_posted'], errors='coerce') # Drop duplicates and rows with NaT in date_posted removed this to make it clear (jan13th) #filtered_df = filtered_df.drop_duplicates().dropna(subset=['date_posted']) #filtering based on data in 2024 filtered_df = filtered_df[filtered_df['date_posted'].dt.year==2025] # Convert titles and company name to lowercase filtered_df['title'] = filtered_df['title'].str.lower() filtered_df['company'] = filtered_df['company'].str.lower() # Function to clean the location def clean_location(location): if pd.isna(location): return location # Return NaN as is # Convert to lowercase location = location.lower() # Remove ', us' or ', usa' from the end using regex location = re.sub(r',\s*(us|usa)$', '', location) return location # Clean the location in place filtered_df['location'] = filtered_df['location'].apply(clean_location) #added new line to drop duplicate records filtered_df = filtered_df.drop_duplicates() return filtered_df @st.cache_data() def get_unique_values(df): return { 'companies': df['company'].unique(), 'locations': df['location'].unique(), 'job_types': df['job_type'].unique(), 'Role_Name': df['title'].unique(), 'Date_posted': df['date_posted'].unique() } @st.cache_data def prepare_dashboard_data(df): top_companies = df['company'].value_counts().head(10) top_locations = df['location'].value_counts().head(10) top_job_titles = df['title'].value_counts().head(20) df_by_date = df.groupby('date_posted').size().reset_index(name='count') return top_companies, top_locations, top_job_titles, df_by_date def create_chart(data, _x, y, title, color_sequence): fig = px.bar(data, x=_x, y=y, title=title, color_discrete_sequence=color_sequence) fig.update_layout(plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF') return fig def create_time_series(df, time_unit='day'): if time_unit == 'week': # Group by week and year df_by_date = df.groupby(df['date_posted'].dt.to_period('W')).size().reset_index(name='count') df_by_date['date_posted'] = df_by_date['date_posted'].dt.to_timestamp() else: # Keep daily grouping as before df_by_date = df.groupby('date_posted').size().reset_index(name='count') fig = px.line(df_by_date, x='date_posted', y='count', title="Job Postings Over Time", color_discrete_sequence=['#4e79a7']) fig.update_layout( plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF', xaxis_title="Date", yaxis_title="Number of Job Postings" ) # Adjust x-axis ticks for weekly view if time_unit == 'week': fig.update_xaxes( dtick="W1", tickformat="%d %b %Y", ticklabelmode="period" ) return fig def display_dashboard(df): top_companies, top_locations, top_job_titles, df_by_date = prepare_dashboard_data(df) today = datetime.now().date() jobs_today = df[df['date_posted'].dt.date == today].shape[0] col1, col2 = st.columns(2) with col1: st.subheader("Job Postings Overview") st.metric("Total Job Postings", len(df)) st.metric("Unique Companies", df['company'].nunique()) st.metric("Job Postings Today", jobs_today) min_date = df['date_posted'].min().date() max_date = df['date_posted'].max().date() st.write(f"Job postings from {min_date} to {max_date}") with col2: fig = create_chart(top_companies, top_companies.index, top_companies.values, "Top 10 Companies", ['#4e79a7']) st.plotly_chart(fig, use_container_width=True) # Job Postings Over Time Chart fig_time_series = create_time_series(df,time_unit='week') st.plotly_chart(fig_time_series, use_container_width=True) col3, col4 = st.columns(2) with col3: fig = create_chart(top_locations, top_locations.index, top_locations.values, "Top 10 Locations", ['#f28e2b']) st.plotly_chart(fig, use_container_width=True) with col4: fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f']) st.plotly_chart(fig, use_container_width=True) @st.cache_data def filter_dataframe(df, companies, locations, job_types,Role_Name,Date_posted): filtered_df = df if companies: filtered_df = filtered_df[filtered_df['company'].isin(companies)] if locations: filtered_df = filtered_df[filtered_df['location'].isin(locations)] if job_types: filtered_df = filtered_df[filtered_df['job_type'].isin(job_types)] if Role_Name: filtered_df = filtered_df[filtered_df['title'].isin(Role_Name)] if Date_posted: filtered_df = filtered_df[filtered_df['date_posted'].isin(Date_posted)] return filtered_df def display_data_explorer(df): st.subheader("Data Explorer") show_all = st.radio("Display", ("All Data", "Filtered Data")) if show_all == "Filtered Data": unique_values = get_unique_values(df) col1, col2, col3, col4,col5 = st.columns(5) with col1: companies = st.multiselect("Select Companies", options=unique_values['companies']) with col2: locations = st.multiselect("Select Locations", options=unique_values['locations']) with col3: job_types = st.multiselect("Select Job Types", options=unique_values['job_types']) with col4: Role_Name = st.multiselect("Select Role Types", options=unique_values['Role_Name']) with col5: Date_posted = st.multiselect("Select Date Posted", options=unique_values['Date_posted']) filtered_df = filter_dataframe(df, companies, locations, job_types, Role_Name,Date_posted) else: filtered_df = df st.write(f"Showing {len(filtered_df)} job listings") # Pagination items_per_page = 15 num_pages = math.ceil(len(filtered_df) / items_per_page) col1, col2, col3 = st.columns([1, 3, 1]) with col2: page = st.number_input("Page", min_value=1, max_value=num_pages, value=1) start_idx = (page - 1) * items_per_page end_idx = start_idx + items_per_page page_df = filtered_df.iloc[start_idx:end_idx] def make_clickable(url): return f'Link' page_df['job_url'] = page_df['job_url'].apply(make_clickable) page_df['company_url'] = page_df['company_url'].apply(make_clickable) st.write(page_df.to_html(escape=False, index=False), unsafe_allow_html=True) col1, col2, col3 = st.columns([1, 3, 1]) with col2: st.write(f"Page {page} of {num_pages}") def display_about_page(): st.markdown(""" ## What is this application? The Job Listings Dashboard is a powerful tool designed to provide insights into the job market. It offers a comprehensive view of job postings, allowing users to explore trends, top companies, locations, and job titles. ### Key Features: - **Interactive Dashboard**: Visualize job market trends with dynamic charts and graphs. - **Data Explorer**: Dive deep into individual job listings with advanced filtering options. - **Real-time Data**: Fetch the latest job data from our Hugging Face dataset. ## How to use this application ### Dashboard 1. Navigate to the Dashboard using the sidebar. 2. View overall statistics such as total job postings, unique companies, and today's postings. 3. Explore interactive charts showing: - Top companies hiring - Job postings over time - Top locations for job opportunities - Most common job titles ### Data Explorer 1. Switch to the Data Explorer using the sidebar. 2. Choose between viewing all data or applying filters. 3. Use the multi-select dropdowns to filter by: - Companies - Locations - Job Types 4. Browse the filtered job listings table. 5. Click on job or company links to view more details on the original posting site. ## Data Source This application fetches data from my Private dataset which scrapes data from varoious job hosting portal and the data gets updated daily. ## Contact For questions, feedback, or collaboration opportunities, feel free to reach out: - LinkedIn: [Nihar Palem](https://www.linkedin.com/in/nihar-palem-1b955a183/) """) # Add a clickable LinkedIn button linkedin_url = "https://www.linkedin.com/in/nihar-palem-1b955a183/" st.markdown(f""" """, unsafe_allow_html=True) def main(): st.title("Job Easz") # Load data df = load_and_concat_data() if df.empty: st.error("No data available. Please check your dataset.") return # Sidebar for navigation st.sidebar.title("Navigation") page = st.sidebar.radio("Go to", ["Dashboard", "Data Explorer", "About"]) # Navigation logic if page == "Dashboard": display_dashboard(df) elif page == "Data Explorer": display_data_explorer(df) elif page == "About": display_about_page() if __name__ == "__main__": main()