Nigus commited on
Commit
6d8b0f0
1 Parent(s): 1b35e06

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from PIL import Image
3
+ from torchvision import transforms
4
+ import gradio as gr
5
+ import os
6
+
7
+ torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
8
+
9
+ model = torch.hub.load('pytorch/vision:v0.9.0', 'shufflenet_v2_x1_0', pretrained=True)
10
+ model.eval()
11
+
12
+ os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
13
+
14
+ def inference(input_image):
15
+ preprocess = transforms.Compose([
16
+ transforms.Resize(256),
17
+ transforms.CenterCrop(224),
18
+ transforms.ToTensor(),
19
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
20
+ ])
21
+ input_tensor = preprocess(input_image)
22
+ input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
23
+
24
+ # move the input and model to GPU for speed if available
25
+ if torch.cuda.is_available():
26
+ input_batch = input_batch.to('cuda')
27
+ model.to('cuda')
28
+
29
+ with torch.no_grad():
30
+ output = model(input_batch)
31
+ # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
32
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
33
+
34
+ # Read the categories
35
+ with open("imagenet_classes.txt", "r") as f:
36
+ categories = [s.strip() for s in f.readlines()]
37
+ # Show top categories per image
38
+ top5_prob, top5_catid = torch.topk(probabilities, 5)
39
+ result = {}
40
+ for i in range(top5_prob.size(0)):
41
+ result[categories[top5_catid[i]]] = top5_prob[i].item()
42
+ return result
43
+
44
+ inputs = gr.inputs.Image(type='pil')
45
+ outputs = gr.outputs.Label(type="confidences",num_top_classes=5)
46
+
47
+ title = "SHUFFLENET V2"
48
+ description = "Gradio demo for SHUFFLENET V2, An efficient ConvNet optimized for speed and memory, pre-trained on Imagenet. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
49
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1807.11164'>ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/shufflenetv2.py'>Github Repo</a></p>"
50
+
51
+ examples = [
52
+ ['dog.jpg']
53
+ ]
54
+ gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()