import subprocess import os import gradio as gr import torch from PIL import Image, ImageEnhance import spaces if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"]) os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator") @spaces.GPU() def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, filename, model_3d, verbose): # inference if stable_diffusion_model == '2': sd_model = "minecraft-skins" elif stable_diffusion_model == 'xl': sd_model = "minecraft-skins-sdxl" inference_command = f"python Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {model_precision_type} {seed} {filename} {'--model_3d' if model_3d else ''} {'--verbose' if verbose else ''}" os.system(inference_command) # view it also as 3d model or not output if model_3d: image_path = os.path.join(f"output_minecraft_skins/{filename}") image = Image.open(image_path) image = image.resize(resample=Image.NEAREST) # Use nearest neighbor interpolation image.save(image_path) return image_path, os.path.join(f"output_minecraft_skins/{filename}_3d_model.glb") else: image_path = os.path.join(f"output_minecraft_skins/{filename}") image = Image.open(image_path) image = image.resize(resample=Image.NEAREST) # Use nearest neighbor interpolation image.save(image_path) return image_path, None # Define Gradio UI components prompt = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like") stable_diffusion_model = gr.Dropdown(['2', 'xl'], value="xl", label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better") num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25) guidance_scale = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results") seed = gr.Number(value=42, label="Seed", info="A starting point to initiate generation, put 0 for a random one") filename = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the.png", value="output-skin.png") model_3d = gr.Checkbox(label="See as 3D Model too", info="View the generated skin as a 3D Model too", value=True) verbose = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False) # Create the Gradio interface gr.Interface( fn=run_inference, inputs=[ prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, filename, model_3d, verbose ], outputs=[ gr.Image(label="Generated Minecraft Skin Image Asset"), gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model View of the Skin") ], title="Minecraft Skin Generator", description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!
Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator
Credits: [Monadical-SAS](https://github.com/Monadical-SAS/minecraft_skin_generator) (Creators of the model), [Nick088](https://linktr.ee/Nick088) (Improving usage of the model), daroche (helping me fix the 3d model texture isue), [Brottweiler](https://gist.github.com/Brottweiler/483d0856c6692ef70cf90bf1a85ce364)(script to fix the 3d model texture, [meew](https://huggingface.co/spaces/meeww/Minecraft_Skin_Generator/blob/main/models/player_model.glb) (Minecraft Player 3d model)", ).launch(show_api=False, share=True)