Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torch
|
4 |
-
|
5 |
from peft import PeftModel, PeftConfig
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
7 |
|
8 |
peft_model_id = "Ngadou/falcon-7b-scam-buster"
|
9 |
config = PeftConfig.from_pretrained(peft_model_id)
|
@@ -11,37 +11,8 @@ config = PeftConfig.from_pretrained(peft_model_id)
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto')
|
12 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
|
|
|
14 |
model = PeftModel.from_pretrained(model, peft_model_id).to("cuda")
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Load the Lora model
|
19 |
-
model = PeftModel.from_pretrained(model, peft_model_id)
|
20 |
-
|
21 |
-
tokenizer.pad_token = tokenizer.eos_token
|
22 |
-
|
23 |
-
def generate(chat):
|
24 |
-
|
25 |
-
input_text = chat + "\nIs this conversation a scam or not and why?"
|
26 |
-
|
27 |
-
|
28 |
-
encoding = tokenizer(input_text, return_tensors="pt").to("cuda")
|
29 |
-
output = model.generate(
|
30 |
-
input_ids=encoding.input_ids,
|
31 |
-
attention_mask=encoding.attention_mask,
|
32 |
-
max_new_tokens=100,
|
33 |
-
do_sample=True,
|
34 |
-
temperature=0.000001,
|
35 |
-
eos_token_id=tokenizer.eos_token_id,
|
36 |
-
top_k = 0
|
37 |
-
)
|
38 |
-
|
39 |
-
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
40 |
-
output_text = output_text.replace(example_text, "").lstrip("\n")
|
41 |
-
|
42 |
-
print("\nAnswer:")
|
43 |
-
print(output_text)
|
44 |
-
return output_text
|
45 |
|
46 |
|
47 |
# def is_scam(instruction):
|
@@ -83,11 +54,45 @@ def generate(chat):
|
|
83 |
# return classification #, reason
|
84 |
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
gr.Interface(
|
88 |
-
fn=
|
89 |
inputs='text',
|
90 |
-
outputs=[
|
91 |
-
|
92 |
-
]
|
93 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio.components import Textbox
|
|
|
|
|
3 |
from peft import PeftModel, PeftConfig
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from transformers import GenerationConfig
|
6 |
+
|
7 |
|
8 |
peft_model_id = "Ngadou/falcon-7b-scam-buster"
|
9 |
config = PeftConfig.from_pretrained(peft_model_id)
|
|
|
11 |
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto')
|
12 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
|
14 |
+
# Adapter model
|
15 |
model = PeftModel.from_pretrained(model, peft_model_id).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
# def is_scam(instruction):
|
|
|
54 |
# return classification #, reason
|
55 |
|
56 |
|
57 |
+
def is_scam(instruction):
|
58 |
+
max_new_tokens=128
|
59 |
+
temperature=0.1
|
60 |
+
top_p=0.75
|
61 |
+
top_k=40
|
62 |
+
num_beams=4
|
63 |
+
|
64 |
+
instruction = instruction + ".\nIs this conversation a scam or not and why?"
|
65 |
+
prompt = instruction + "\n### Solution:\n"
|
66 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
67 |
+
input_ids = inputs["input_ids"].to("cuda")
|
68 |
+
attention_mask = inputs["attention_mask"].to("cuda")
|
69 |
+
generation_config = GenerationConfig(
|
70 |
+
temperature=temperature,
|
71 |
+
top_p=top_p,
|
72 |
+
top_k=top_k,
|
73 |
+
num_beams=num_beams,
|
74 |
+
)
|
75 |
+
with torch.no_grad():
|
76 |
+
generation_output = model.generate(
|
77 |
+
input_ids=input_ids,
|
78 |
+
attention_mask=attention_mask,
|
79 |
+
generation_config=generation_config,
|
80 |
+
return_dict_in_generate=True,
|
81 |
+
output_scores=True,
|
82 |
+
max_new_tokens=max_new_tokens,
|
83 |
+
early_stopping=True
|
84 |
+
)
|
85 |
+
s = generation_output.sequences[0]
|
86 |
+
output = tokenizer.decode(s)
|
87 |
+
|
88 |
+
classification = output.split("### Solution:")[1].lstrip("\n")
|
89 |
+
print(classification)
|
90 |
+
|
91 |
+
return str(classification), "Hello World"
|
92 |
+
|
93 |
+
|
94 |
gr.Interface(
|
95 |
+
fn=is_scam,
|
96 |
inputs='text',
|
97 |
+
outputs= ['text','text']
|
98 |
+
).launch(share=True, debug=True)
|
|
|
|