NexusRaven-V2-Demo / tools.py
brian-yu-nexusflow's picture
Upload 7 files
5321b2e
raw
history blame
8.84 kB
"""
These are all the tools used in the NexusRaven V2 demo! You can provide any tools you want to Raven.
Nothing in this file is specific to Raven, code/information related to Raven can be found in the `raven_demo.py` file.
"""
from typing import Dict, List, Union
from math import radians, cos, sin, asin, sqrt
import random
import requests
from googlemaps import Client
from config import DemoConfig
class Tools:
def __init__(self, config: DemoConfig) -> None:
self.config = config
self.gmaps = Client(config.gmaps_client_key)
self.client_ip: str | None = None
def haversine(self, lon1, lat1, lon2, lat2) -> float:
"""
Calculate the great circle distance in kilometers between two points on the earth (specified in decimal degrees).
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of Earth in kilometers. Use 3956 for miles
return round(c * r, 2)
def get_current_location(self) -> str:
"""
Returns the current location. ONLY use this if the user has not provided an explicit location in the query.
"""
try:
response = requests.get(f"http://ip-api.com/json/{self.client_ip}")
location_data = response.json()
city = location_data["city"]
region = location_data["regionName"]
country = location_data["countryCode"]
return f"{city}, {region}, {country}"
except:
return "San Francisco, California, US"
def sort_results(self, places : list, sort: str, descending: bool = True, first_n : int = None) -> List:
"""
Sorts the results by either 'distance', 'rating' or 'price'.
- places (list): The output list from the recommendations.
- sort (str): If set, sorts by either 'distance' or 'rating' or 'price'. ONLY supports 'distance' or 'rating' or 'price'.
- descending (bool): If descending is set, setting this boolean to true will sort the results such that the highest values are first.
- first_n (int): If provided, only retains the first n items in the final sorted list.
When people ask for 'closest' or 'nearest', sort by 'distance'.
When people ask for 'cheapest' or 'most expensive', sort by 'price'.
When people ask for 'best' or 'highest rated', sort by rating.
"""
if not sort:
return places
if sort == "price":
sort = "price_level"
items = sorted(
places,
key=lambda x: x.get(sort, float("inf")),
reverse=descending,
)
if first_n:
items = items[:first_n]
return items
def get_latitude_longitude(self, location: str) -> List:
"""
Given a city name, this function provides the latitude and longitude of the specific location.
- location: This can be a city like 'Austin', or a place like 'Austin Airport', etc.
"""
return self.gmaps.geocode(location)
def get_distance(self, place_1: str, place_2: str):
"""
Provides distance between two locations. Do NOT provide latitude longitude, but rather, provide the string descriptions.
Allows you to provide output from the get_recommendations API.
- place_1: The first location.
- place_2: The second location.
"""
if isinstance(place_1, list) and len(place_1) > 0:
place_1 = place_1[0]
if isinstance(place_2, list) and len(place_2) > 0:
place_2 = place_2[0]
latlong_1 = self.get_latitude_longitude(place_1)
latlong_2 = self.get_latitude_longitude(place_2)
if isinstance(place_1, dict):
place_1 = place_1["name"]
if isinstance(place_2, dict):
place_2 = place_2["name"]
if len(latlong_1) == 0 or len(latlong_2) == 0:
raise ValueError
latlong1 = latlong_1[0]["geometry"]["location"]
latlong2 = latlong_2[0]["geometry"]["location"]
dist = self.haversine(
latlong1["lng"], latlong1["lat"], latlong2["lng"], latlong2["lat"]
)
dist = dist * 0.621371
return [f"The distance between {place_1} and {place_2} is {dist:.3f} miles"]
def get_recommendations(self, topics: list, lat_long: tuple):
"""
Returns the recommendations for a specific topic that is of interest. Remember, a topic IS NOT an establishment. For establishments, please use another function.
- topics (list): A list of topics of interest to pull recommendations for. Can be multiple words.
- lat_long (tuple): The lat_long of interest.
"""
if len(lat_long) == 0:
return []
topic = " ".join(topics)
latlong = lat_long[0]["geometry"]["location"]
results = self.gmaps.places(
query=topic,
location=latlong,
)
return results["results"]
def find_places_near_location(
self, type_of_place: list, location: str, radius_miles: int = 50
) -> List[Dict]:
"""
Find places close to a very defined location.
- type_of_place (list): The type of place. This can be something like 'restaurant' or 'airport'. Make sure that it is a physical location. You can provide multiple words.
- location (str): The location for the search. This can be a city's name, region, or anything that specifies the location.
- radius_miles (int): Optional. The max distance from the described location to limit the search. Distance is specified in miles.
"""
# Get latitude and longitude for the location
verb_location = location
geocode_result = self.gmaps.geocode(location)
if geocode_result:
latlong = geocode_result[0]["geometry"]["location"]
location = (latlong["lat"], latlong["lng"])
else:
raise ValueError("Could not geocode the provided location.")
type_of_place = " ".join(type_of_place)
# Perform the search using Google Places API
places_result = self.gmaps.places_nearby(
location=location, keyword=type_of_place, radius=radius_miles * 1609.34
)
places = places_result.get("results", [])
new_places = []
for place in places:
place_location = place["geometry"]["location"]
distance = self.haversine(
latlong["lng"],
latlong["lat"],
place_location["lng"],
place_location["lat"],
)
if distance == 0.0:
continue
place["distance"] = f"{distance} kilometers from {verb_location}"
new_places.append(place)
places = new_places
if len(places) == 0:
return []
return self.sort_results(places, sort="distance", descending=False)
def get_some_reviews(self, place_names: list, location: str = None):
"""
Given an establishment (or place) name, return reviews about the establishment.
- place_names (list): The name of the establishment. This should be a physical location name. You can provide multiple inputs.
- location (str) : The location where the restaurant is located. Optional argument.
"""
all_reviews = []
for place_name in place_names:
if isinstance(place_name, str):
if location:
place_name += " , " + location
elif isinstance(place_name, dict) and "results" in place_name and "name" in place_name["results"]:
place_name = place_name["results"]["name"]
elif isinstance(place_name, dict) and "name" in place_name:
place_name = place_name["name"]
search_results = self.gmaps.places(place_name)
if not search_results.get("results"):
return []
# Assuming the first result is the most relevant
place_id = search_results["results"][0]["place_id"]
place_details = self.gmaps.place(place_id=place_id)
reviews = place_details["result"].get("reviews", [])
for review in reviews:
review["for_location"] = place_name
review["formatted_address"] = place_details["result"][
"formatted_address"
]
all_reviews.extend(reviews)
random.shuffle(all_reviews)
return all_reviews