Neurolingua commited on
Commit
caa9340
·
verified ·
1 Parent(s): 4a8d12c

Update teacher_function.py

Browse files
Files changed (1) hide show
  1. teacher_function.py +158 -158
teacher_function.py CHANGED
@@ -1,158 +1,158 @@
1
- from ai71 import AI71
2
- from PyPDF2 import PdfReader
3
- from pdf2image import convert_from_path
4
- import cv2
5
- import numpy as np
6
- import pytesseract
7
- AI71_API_KEY = "api71-api-20725a9d-46d6-4baf-9e26-abfca35ab242"
8
-
9
- def extract_text_from_pdf(pdf_file):
10
- text = ""
11
- reader = PdfReader(pdf_file)
12
- for page in reader.pages:
13
- text += page.extract_text()
14
- return text
15
-
16
- def generate_questions_from_text(text, no_of_questions, marks_per_part, no_parts):
17
- ai71 = AI71(AI71_API_KEY)
18
- messages = [
19
- {"role": "system", "content": "You are a teaching assistant"},
20
- {"role": "user",
21
- "content": f"Give your own {no_of_questions} questions under each part for {no_parts} parts with {marks_per_part} marks for each part. Note that all questions must be from the topics of {text}"}
22
- ]
23
-
24
- questions = []
25
- for chunk in ai71.chat.completions.create(
26
- model="tiiuae/falcon-180b-chat",
27
- messages=messages,
28
- stream=True,
29
- ):
30
- if chunk.choices[0].delta.content:
31
- questions.append(chunk.choices[0].delta.content)
32
-
33
- return "".join(questions)
34
-
35
- def extract_text_from_image(image_path):
36
- img = cv2.imread(image_path)
37
- text = pytesseract.image_to_string(img)
38
- return text
39
-
40
-
41
- def extract_text_from_pdf(pdf_path):
42
- images = convert_from_path(pdf_path)
43
- final_text = ""
44
- for image in images:
45
- image_cv = np.array(image)
46
- image_cv = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
47
- text = pytesseract.image_to_string(image_cv)
48
- final_text += text
49
- return final_text
50
-
51
-
52
- def evaluate(question, answer, max_marks):
53
- prompt = f"""Questions: {question}
54
- Answer: {answer}.
55
-
56
-
57
- Evaluate above questions one by one(if there are multiple) by provided answers and assign marks out of {max_marks}. No need overall score. Note that as maximum mark increases, the size of the answer must be large enough to get good marks. Give ouput in format below:
58
- description:
59
- assigned marks:
60
- total marks:
61
- Note that you should not display total marks"""
62
-
63
- messages = [
64
- {"role": "system", "content": "You are an answer evaluator"},
65
- {"role": "user", "content": prompt}
66
- ]
67
-
68
- response_content = ""
69
- for chunk in AI71(AI71_API_KEY).chat.completions.create(
70
- model="tiiuae/falcon-180b-chat",
71
- messages=messages,
72
- stream=True
73
- ):
74
- if chunk.choices[0].delta.content:
75
- response_content += chunk.choices[0].delta.content
76
-
77
- return response_content
78
-
79
- def generate_student_report(name, age, cgpa, course, assigned_test, ai_test, interests, difficulty, courses_taken):
80
- prompt = f"""
81
- Name: {name}
82
- Age: {age}
83
- CGPA: {cgpa}
84
- Course: {course}
85
- Assigned Test Score: {assigned_test}
86
- AI generated Test Score: {ai_test}
87
- Interests: {interests}
88
- Difficulty in: {difficulty}
89
- Courses Taken: {courses_taken}
90
- Use the above student data to generate a neat personalized report and suggested teaching methods."""
91
-
92
- client = AI71(AI71_API_KEY)
93
-
94
- response = client.chat.completions.create(
95
- model="tiiuae/falcon-180B-chat",
96
- messages=[
97
- {"role": "system", "content": "You are a student report generator."},
98
- {"role": "user", "content": prompt}
99
- ]
100
- )
101
-
102
- report = response.choices[0].message.content if response.choices and response.choices[
103
- 0].message else "No report generated."
104
- print(report)
105
-
106
- return report.replace('\n','<br>')
107
- def generate_timetable_module(data,hours_per_day,days_per_week,semester_end_date,subjects):
108
- response = AI71(AI71_API_KEY).chat.completions.create(
109
- model="tiiuae/falcon-180B-chat",
110
- messages=[
111
- {"role": "system", "content": "You are a helpful assistant."},
112
- {"role": "user", "content": f"Create a timetable starting from Monday based on the following inputs:\n"
113
- f"- Number of hours per day: {hours_per_day}\n"
114
- f"- Number of days per week: {days_per_week}\n"
115
- f"- Semester end date: {semester_end_date}\n"
116
- f"- Subjects: {', '.join(subjects)}\n"}
117
- ]
118
- )
119
-
120
- # Access the response content correctly
121
- return( response.choices[0].message.content if response.choices and response.choices[0].message else "No timetable generated.")
122
-
123
- def cluster_topics(academic_topics):
124
- prompt = (
125
- "Please cluster the following academic topics into their respective subjects such as Mathematics, Physics, etc.: "
126
- + ", ".join(academic_topics))
127
- response = ""
128
- for chunk in AI71(AI71_API_KEY).chat.completions.create(
129
- model="tiiuae/falcon-180b-chat",
130
- messages=[
131
- {"role": "system", "content": "You are a helpful assistant."},
132
- {"role": "user", "content": prompt},
133
- ],
134
- stream=True,
135
- ):
136
- if chunk.choices[0].delta.content:
137
- response += chunk.choices[0].delta.content
138
- return response
139
-
140
- def generate_timetable_weak(clustered_subjects, hours_per_day):
141
- prompt = (
142
- f"Using the following subjects and topics:\n{clustered_subjects}\n"
143
- f"Generate a special class timetable for {hours_per_day} hours per day.\n"
144
- f"Also provide reference books and methods to teach the slow learners for each subject"
145
- )
146
- response = ""
147
- for chunk in AI71(AI71_API_KEY).chat.completions.create(
148
- model="tiiuae/falcon-180b-chat",
149
- messages=[
150
- {"role": "system", "content": "You are a helpful assistant."},
151
- {"role": "user", "content": prompt},
152
- ],
153
- stream=True,
154
- ):
155
- if chunk.choices[0].delta.content:
156
- response += chunk.choices[0].delta.content
157
- return response
158
-
 
1
+ from ai71 import AI71
2
+ from PyPDF2 import PdfReader
3
+ from pdf2image import convert_from_path
4
+ import cv2
5
+ import numpy as np
6
+ import pytesseract
7
+ AI71_API_KEY = "api71-api-652e5c6c-8edf-41d0-9c34-28522b07bef9"
8
+
9
+ def extract_text_from_pdf(pdf_file):
10
+ text = ""
11
+ reader = PdfReader(pdf_file)
12
+ for page in reader.pages:
13
+ text += page.extract_text()
14
+ return text
15
+
16
+ def generate_questions_from_text(text, no_of_questions, marks_per_part, no_parts):
17
+ ai71 = AI71(AI71_API_KEY)
18
+ messages = [
19
+ {"role": "system", "content": "You are a teaching assistant"},
20
+ {"role": "user",
21
+ "content": f"Give your own {no_of_questions} questions under each part for {no_parts} parts with {marks_per_part} marks for each part. Note that all questions must be from the topics of {text}"}
22
+ ]
23
+
24
+ questions = []
25
+ for chunk in ai71.chat.completions.create(
26
+ model="tiiuae/falcon-180b-chat",
27
+ messages=messages,
28
+ stream=True,
29
+ ):
30
+ if chunk.choices[0].delta.content:
31
+ questions.append(chunk.choices[0].delta.content)
32
+
33
+ return "".join(questions)
34
+
35
+ def extract_text_from_image(image_path):
36
+ img = cv2.imread(image_path)
37
+ text = pytesseract.image_to_string(img)
38
+ return text
39
+
40
+
41
+ def extract_text_from_pdf(pdf_path):
42
+ images = convert_from_path(pdf_path)
43
+ final_text = ""
44
+ for image in images:
45
+ image_cv = np.array(image)
46
+ image_cv = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
47
+ text = pytesseract.image_to_string(image_cv)
48
+ final_text += text
49
+ return final_text
50
+
51
+
52
+ def evaluate(question, answer, max_marks):
53
+ prompt = f"""Questions: {question}
54
+ Answer: {answer}.
55
+
56
+
57
+ Evaluate above questions one by one(if there are multiple) by provided answers and assign marks out of {max_marks}. No need overall score. Note that as maximum mark increases, the size of the answer must be large enough to get good marks. Give ouput in format below:
58
+ description:
59
+ assigned marks:
60
+ total marks:
61
+ Note that you should not display total marks"""
62
+
63
+ messages = [
64
+ {"role": "system", "content": "You are an answer evaluator"},
65
+ {"role": "user", "content": prompt}
66
+ ]
67
+
68
+ response_content = ""
69
+ for chunk in AI71(AI71_API_KEY).chat.completions.create(
70
+ model="tiiuae/falcon-180b-chat",
71
+ messages=messages,
72
+ stream=True
73
+ ):
74
+ if chunk.choices[0].delta.content:
75
+ response_content += chunk.choices[0].delta.content
76
+
77
+ return response_content
78
+
79
+ def generate_student_report(name, age, cgpa, course, assigned_test, ai_test, interests, difficulty, courses_taken):
80
+ prompt = f"""
81
+ Name: {name}
82
+ Age: {age}
83
+ CGPA: {cgpa}
84
+ Course: {course}
85
+ Assigned Test Score: {assigned_test}
86
+ AI generated Test Score: {ai_test}
87
+ Interests: {interests}
88
+ Difficulty in: {difficulty}
89
+ Courses Taken: {courses_taken}
90
+ Use the above student data to generate a neat personalized report and suggested teaching methods."""
91
+
92
+ client = AI71(AI71_API_KEY)
93
+
94
+ response = client.chat.completions.create(
95
+ model="tiiuae/falcon-180B-chat",
96
+ messages=[
97
+ {"role": "system", "content": "You are a student report generator."},
98
+ {"role": "user", "content": prompt}
99
+ ]
100
+ )
101
+
102
+ report = response.choices[0].message.content if response.choices and response.choices[
103
+ 0].message else "No report generated."
104
+ print(report)
105
+
106
+ return report.replace('\n','<br>')
107
+ def generate_timetable_module(data,hours_per_day,days_per_week,semester_end_date,subjects):
108
+ response = AI71(AI71_API_KEY).chat.completions.create(
109
+ model="tiiuae/falcon-180B-chat",
110
+ messages=[
111
+ {"role": "system", "content": "You are a helpful assistant."},
112
+ {"role": "user", "content": f"Create a timetable starting from Monday based on the following inputs:\n"
113
+ f"- Number of hours per day: {hours_per_day}\n"
114
+ f"- Number of days per week: {days_per_week}\n"
115
+ f"- Semester end date: {semester_end_date}\n"
116
+ f"- Subjects: {', '.join(subjects)}\n"}
117
+ ]
118
+ )
119
+
120
+ # Access the response content correctly
121
+ return( response.choices[0].message.content if response.choices and response.choices[0].message else "No timetable generated.")
122
+
123
+ def cluster_topics(academic_topics):
124
+ prompt = (
125
+ "Please cluster the following academic topics into their respective subjects such as Mathematics, Physics, etc.: "
126
+ + ", ".join(academic_topics))
127
+ response = ""
128
+ for chunk in AI71(AI71_API_KEY).chat.completions.create(
129
+ model="tiiuae/falcon-180b-chat",
130
+ messages=[
131
+ {"role": "system", "content": "You are a helpful assistant."},
132
+ {"role": "user", "content": prompt},
133
+ ],
134
+ stream=True,
135
+ ):
136
+ if chunk.choices[0].delta.content:
137
+ response += chunk.choices[0].delta.content
138
+ return response
139
+
140
+ def generate_timetable_weak(clustered_subjects, hours_per_day):
141
+ prompt = (
142
+ f"Using the following subjects and topics:\n{clustered_subjects}\n"
143
+ f"Generate a special class timetable for {hours_per_day} hours per day.\n"
144
+ f"Also provide reference books and methods to teach the slow learners for each subject"
145
+ )
146
+ response = ""
147
+ for chunk in AI71(AI71_API_KEY).chat.completions.create(
148
+ model="tiiuae/falcon-180b-chat",
149
+ messages=[
150
+ {"role": "system", "content": "You are a helpful assistant."},
151
+ {"role": "user", "content": prompt},
152
+ ],
153
+ stream=True,
154
+ ):
155
+ if chunk.choices[0].delta.content:
156
+ response += chunk.choices[0].delta.content
157
+ return response
158
+