Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,68 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
output = {r['label']: round(r['score'], 3) for r in results}
|
10 |
-
return output
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
title="Empath AI - Emotion Detection",
|
17 |
-
description="Type a sentence to see what emotions it contains!"
|
18 |
-
)
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
|
5 |
+
TEXT_MODEL = "j-hartmann/emotion-english-distilroberta-base"
|
6 |
+
IMAGE_MODEL = "trpakov/vit-face-expression"
|
7 |
+
AUDIO_MODEL = "superb/hubert-large-superb-er"
|
8 |
|
9 |
+
text_pipe = pipeline("text-classification", model=TEXT_MODEL, return_all_scores=True)
|
10 |
+
image_pipe = pipeline("image-classification", model=IMAGE_MODEL, top_k=None)
|
11 |
+
audio_pipe = pipeline("audio-classification", model=AUDIO_MODEL, top_k=None)
|
|
|
|
|
12 |
|
13 |
+
def _as_label_dict(preds):
|
14 |
+
|
15 |
+
preds_sorted = sorted(preds, key=lambda p: p["score"], reverse=True)
|
16 |
+
return {p["label"]: float(round(p["score"], 4)) for p in preds_sorted}
|
|
|
|
|
|
|
17 |
|
18 |
+
def analyze_text(text: str):
|
19 |
+
if not text or not text.strip():
|
20 |
+
return {"(enter some text)": 1.0}
|
21 |
+
preds = text_pipe(text)[0]
|
22 |
+
return _as_label_dict(preds)
|
23 |
+
|
24 |
+
def analyze_face(img):
|
25 |
+
if img is None:
|
26 |
+
return {"(no image)": 1.0}
|
27 |
+
if isinstance(img, Image.Image):
|
28 |
+
pil = img
|
29 |
+
else:
|
30 |
+
pil = Image.fromarray(img)
|
31 |
+
preds = image_pipe(pil)
|
32 |
+
return _as_label_dict(preds)
|
33 |
+
|
34 |
+
def analyze_voice(audio_path):
|
35 |
+
if audio_path is None:
|
36 |
+
return {"(no audio)": 1.0}
|
37 |
+
preds = audio_pipe(audio_path)
|
38 |
+
return _as_label_dict(preds)
|
39 |
+
|
40 |
+
with gr.Blocks(title="Empath AI — Multimodal Emotion Detection") as demo:
|
41 |
+
gr.Markdown(
|
42 |
+
"""
|
43 |
+
# Empath AI — Emotion Detection (Text • Face • Voice)
|
44 |
+
Grant permission when the browser asks for **camera/microphone**.
|
45 |
+
Nothing is stored; analysis happens in memory and the scores are shown back to you.
|
46 |
+
"""
|
47 |
+
)
|
48 |
+
|
49 |
+
with gr.Tab("Text"):
|
50 |
+
t_in = gr.Textbox(label="Enter text", lines=3, placeholder="Type something here…")
|
51 |
+
t_btn = gr.Button("Analyze Text", variant="primary")
|
52 |
+
t_out = gr.Label(num_top_classes=3)
|
53 |
+
t_btn.click(analyze_text, inputs=t_in, outputs=t_out)
|
54 |
+
|
55 |
+
with gr.Tab("Face (Webcam or Upload)"):
|
56 |
+
i_in = gr.Image(sources=["webcam", "upload"], type="pil", label="Webcam / Upload")
|
57 |
+
i_btn = gr.Button("Analyze Face", variant="primary")
|
58 |
+
i_out = gr.Label(num_top_classes=3)
|
59 |
+
i_btn.click(analyze_face, inputs=i_in, outputs=i_out)
|
60 |
+
|
61 |
+
with gr.Tab("Voice (Mic or Upload)"):
|
62 |
+
a_in = gr.Audio(sources=["microphone", "upload"], type="filepath",
|
63 |
+
label="Record or upload a short clip (≤30s)")
|
64 |
+
a_btn = gr.Button("Analyze Voice", variant="primary")
|
65 |
+
a_out = gr.Label(num_top_classes=3)
|
66 |
+
a_btn.click(analyze_voice, inputs=a_in, outputs=a_out)
|
67 |
+
|
68 |
+
demo.launch()
|