Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
TEXT_MODEL = "j-hartmann/emotion-english-distilroberta-base"
|
6 |
IMAGE_MODEL = "trpakov/vit-face-expression"
|
@@ -11,10 +12,11 @@ image_pipe = pipeline("image-classification", model=IMAGE_MODEL, top_k=None)
|
|
11 |
audio_pipe = pipeline("audio-classification", model=AUDIO_MODEL, top_k=None)
|
12 |
|
13 |
def _as_label_dict(preds):
|
14 |
-
|
15 |
preds_sorted = sorted(preds, key=lambda p: p["score"], reverse=True)
|
16 |
return {p["label"]: float(round(p["score"], 4)) for p in preds_sorted}
|
17 |
|
|
|
18 |
def analyze_text(text: str):
|
19 |
if not text or not text.strip():
|
20 |
return {"(enter some text)": 1.0}
|
@@ -34,15 +36,56 @@ def analyze_face(img):
|
|
34 |
def analyze_voice(audio_path):
|
35 |
if audio_path is None:
|
36 |
return {"(no audio)": 1.0}
|
37 |
-
preds = audio_pipe(audio_path)
|
38 |
return _as_label_dict(preds)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Blocks(title="Empath AI β Multimodal Emotion Detection") as demo:
|
41 |
gr.Markdown(
|
42 |
"""
|
43 |
-
# Empath AI β Emotion Detection (Text β’ Face β’ Voice)
|
44 |
-
|
45 |
-
|
|
|
46 |
"""
|
47 |
)
|
48 |
|
@@ -65,4 +108,15 @@ with gr.Blocks(title="Empath AI β Multimodal Emotion Detection") as demo:
|
|
65 |
a_out = gr.Label(num_top_classes=3)
|
66 |
a_btn.click(analyze_voice, inputs=a_in, outputs=a_out)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
+
import imageio
|
5 |
|
6 |
TEXT_MODEL = "j-hartmann/emotion-english-distilroberta-base"
|
7 |
IMAGE_MODEL = "trpakov/vit-face-expression"
|
|
|
12 |
audio_pipe = pipeline("audio-classification", model=AUDIO_MODEL, top_k=None)
|
13 |
|
14 |
def _as_label_dict(preds):
|
15 |
+
"""Convert HF predictions to {label: score} sorted desc."""
|
16 |
preds_sorted = sorted(preds, key=lambda p: p["score"], reverse=True)
|
17 |
return {p["label"]: float(round(p["score"], 4)) for p in preds_sorted}
|
18 |
|
19 |
+
# ---------- Text ----------
|
20 |
def analyze_text(text: str):
|
21 |
if not text or not text.strip():
|
22 |
return {"(enter some text)": 1.0}
|
|
|
36 |
def analyze_voice(audio_path):
|
37 |
if audio_path is None:
|
38 |
return {"(no audio)": 1.0}
|
39 |
+
preds = audio_pipe(audio_path)
|
40 |
return _as_label_dict(preds)
|
41 |
|
42 |
+
def analyze_video(video_path, sample_fps=2, max_frames=120):
|
43 |
+
"""
|
44 |
+
Read the video, sample ~sample_fps frames/second (up to max_frames),
|
45 |
+
run face-expression model on each, and return the average scores.
|
46 |
+
"""
|
47 |
+
if video_path is None:
|
48 |
+
return {"(no video)": 1.0}, "No file provided."
|
49 |
+
|
50 |
+
try:
|
51 |
+
reader = imageio.get_reader(video_path)
|
52 |
+
meta = reader.get_meta_data()
|
53 |
+
fps = int(meta.get("fps", 25))
|
54 |
+
step = max(int(round(fps / max(1, sample_fps))), 1)
|
55 |
+
|
56 |
+
totals = {}
|
57 |
+
used = 0
|
58 |
+
|
59 |
+
for i, frame in enumerate(reader):
|
60 |
+
if i % step != 0:
|
61 |
+
continue
|
62 |
+
if used >= max_frames:
|
63 |
+
break
|
64 |
+
pil = Image.fromarray(frame)
|
65 |
+
preds = image_pipe(pil)
|
66 |
+
for p in preds:
|
67 |
+
label = p["label"]
|
68 |
+
totals[label] = totals.get(label, 0.0) + float(p["score"])
|
69 |
+
used += 1
|
70 |
+
|
71 |
+
if used == 0:
|
72 |
+
return {"(no frames sampled)": 1.0}, "Could not sample frames; try a shorter/different video."
|
73 |
+
|
74 |
+
avg = {k: round(v / used, 4) for k, v in totals.items()}
|
75 |
+
avg_sorted = dict(sorted(avg.items(), key=lambda x: x[1], reverse=True))
|
76 |
+
info = f"Frames analyzed: {used} β’ Sampling β{sample_fps} fps β’ Max frames: {max_frames}"
|
77 |
+
return avg_sorted, info
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
return {"(error)": 1.0}, f"Video read error: {e}"
|
81 |
+
|
82 |
with gr.Blocks(title="Empath AI β Multimodal Emotion Detection") as demo:
|
83 |
gr.Markdown(
|
84 |
"""
|
85 |
+
# Empath AI β Emotion Detection (Text β’ Face β’ Voice β’ Video)
|
86 |
+
- Allow **camera** and **microphone** permissions when prompted.
|
87 |
+
- Keep videos **short (β€15s)** for faster results.
|
88 |
+
- No data is stored; analysis happens in memory and results are shown back to you.
|
89 |
"""
|
90 |
)
|
91 |
|
|
|
108 |
a_out = gr.Label(num_top_classes=3)
|
109 |
a_btn.click(analyze_voice, inputs=a_in, outputs=a_out)
|
110 |
|
111 |
+
with gr.Tab("Video (Record or Upload)"):
|
112 |
+
# Gradio will show a camera-record button and an upload option.
|
113 |
+
v_in = gr.Video(sources=["webcam", "upload"], label="Record or upload a short video (β€15s)", height=280)
|
114 |
+
with gr.Row():
|
115 |
+
fps = gr.Slider(1, 5, value=2, step=1, label="Sampling FPS (frames analyzed per second)")
|
116 |
+
maxf = gr.Slider(30, 240, value=120, step=10, label="Max Frames to Analyze")
|
117 |
+
v_btn = gr.Button("Analyze Video", variant="primary")
|
118 |
+
v_out = gr.Label(num_top_classes=3, label="Average Emotion (video)")
|
119 |
+
v_info = gr.Markdown()
|
120 |
+
v_btn.click(analyze_video, inputs=[v_in, fps, maxf], outputs=[v_out, v_info])
|
121 |
+
|
122 |
+
demo.launch()
|