# from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor, AutoTokenizer, AutoModelForSeq2SeqLM # import torchaudio # from torchaudio.transforms import Resample # import torch # from flask import Flask, request, jsonify # # from PLI import Image # # import pytesseract # # import gradio as gr # app = Flask(__name__) # # Initialize TTS model from Hugging Face # tts_model_name = "suno/bark" # tts = pipeline(task="text-to-speech", model=tts_model_name) # # Initialize Blip model for image captioning # model_id = "dblasko/blip-dalle3-img2prompt" # blip_model = BlipForConditionalGeneration.from_pretrained(model_id) # blip_processor = BlipProcessor.from_pretrained(model_id) # @app.route('/generate_caption_and_audio', methods=['POST']) # def generate_caption (): # try: # # Get image file from the request # image = request.files['image'] # # Generate caption from image using Blip model # inputs = blip_processor(images=image, return_tensors="pt") # pixel_values = inputs.pixel_values # generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) # generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # # Use TTS model to convert generated caption to audio # audio_output = tts(generated_caption) # audio_path = "generated_audio_resampled.wav" # torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) # return jsonify({'generate_caption': generate_caption, 'audio_path': audio_path}) # except Exception as e: # return jsonify({'error': str(e)}) # if __name__ == '__main__': # app.run(debug=True) from flask import Flask, request, jsonify from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor import torchaudio from torchaudio.transforms import Resample import torch from io import BytesIO app = Flask(__name__) # Initialize TTS model from Hugging Face tts_model_name = "suno/bark" tts = pipeline(task="text-to-speech", model=tts_model_name) # Initialize Blip model for image captioning model_id = "dblasko/blip-dalle3-img2prompt" blip_model = BlipForConditionalGeneration.from_pretrained(model_id) blip_processor = BlipProcessor.from_pretrained(model_id) def generate_caption(image): # Generate caption from image using Blip model inputs = blip_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Use TTS model to convert generated caption to audio audio_output = tts(generated_caption) audio_path = "generated_audio_resampled.wav" torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) return generated_caption, audio_path @app.route('/upload', methods=['POST']) def upload_image(): if 'image' not in request.files: return jsonify({'error': 'No image provided'}), 400 image_file = request.files['image'].read() generated_caption, audio_path = generate_caption(image_file) return jsonify({'generated_caption': generated_caption, 'audio_url': audio_path}), 200 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)