import gradio as gr import torch import torch.nn as nn from transformers import XLNetTokenizer, XLNetModel import numpy as np class TextEncoder(nn.Module): def __init__(self): super().__init__() self.transformer = XLNetModel.from_pretrained("xlnet-base-cased") def forward(self, input_ids, token_type_ids, attention_mask): hidden = self.transformer(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask).last_hidden_state context = hidden.mean(dim=1) context = context.view(*context.shape, 1, 1) return context class Generator(nn.Module): def __init__(self, nz=100, ngf=64, nt=768, nc=3): super().__init__() self.layer1 = nn.Sequential( nn.ConvTranspose2d(nz+nt, ngf*8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf*8) ) self.layer2 = nn.Sequential( nn.Conv2d(ngf*8, ngf*2, 1, 1), nn.Dropout2d(inplace=True), nn.BatchNorm2d(ngf*2), nn.ReLU(True) ) self.layer3 = nn.Sequential( nn.Conv2d(ngf*2, ngf*2, 3, 1, 1), nn.Dropout2d(inplace=True), nn.BatchNorm2d(ngf*2), nn.ReLU(True) ) self.layer4 = nn.Sequential( nn.Conv2d(ngf*2, ngf*8, 3, 1, 1), nn.Dropout2d(inplace=True), nn.BatchNorm2d(ngf*8), nn.ReLU(True) ) self.layer5 = nn.Sequential( nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf*4), nn.ReLU(True) ) self.layer6 = nn.Sequential( nn.Conv2d(ngf*4, ngf, 1, 1), nn.Dropout2d(inplace=True), nn.BatchNorm2d(ngf), nn.ReLU(True) ) self.layer7 = nn.Sequential( nn.Conv2d(ngf, ngf, 3, 1, 1), nn.Dropout2d(inplace=True), nn.BatchNorm2d(ngf), nn.ReLU(True) ) self.layer8 = nn.Sequential( nn.Conv2d(ngf, ngf*4, 3, 1, 1), nn.Dropout2d(inplace=True), nn.BatchNorm2d(ngf*4), nn.ReLU(True) ) self.layer9 = nn.Sequential( nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf*2), nn.ReLU(True) ) self.layer10 = nn.Sequential( nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True) ) self.layer11 = nn.Sequential( nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, noise, encoded_text): x = torch.cat([noise, encoded_text], dim=1) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = self.layer6(x) x = self.layer7(x) x = self.layer8(x) x = self.layer9(x) x = self.layer10(x) x = self.layer11(x) return x # Load the model and tokenizer model_path = "checkpoint.pth" # Adjust as necessary tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased') text_encoder = TextEncoder() model = Generator() model_state_dict = torch.load(model_path, map_location="cpu") generator = model_state_dict['models']['generator'] model.load_state_dict(generator) text_encoder.to("cpu") model.to("cpu") model.eval() def generate_image(enc_text): noise = torch.randn((1, 100, 1, 1), device="cpu") with torch.no_grad(): generated_image = model(noise, enc_text).detach().squeeze().cpu() gen_image_np = generated_image.numpy() gen_image_np = np.transpose(gen_image_np, (1, 2, 0)) # Change from CHW to HWC gen_image_np = (gen_image_np - gen_image_np.min()) / (gen_image_np.max() - gen_image_np.min()) # Normalize to [0, 1] gen_image_np = (gen_image_np * 255).astype(np.uint8) return gen_image_np def encode_text(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) encoded_text = text_encoder(**inputs) return encoded_text def on_generate_button_click(text_input): if text_input: encoded_text = encode_text(text_input) generated_image = generate_image(encoded_text) return generated_image return None # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("## Flower Image Generator") text_input = gr.Textbox(label="Enter a flower-related description", value="A beautiful red rose") generate_button = gr.Button("Generate Image") output_image = gr.Image(type="numpy") # Ensure output type is correct generate_button.click(on_generate_button_click, inputs=text_input, outputs=output_image) # Launch the Gradio app demo.launch()