import face_recognition as fr import cv2 import numpy as np import ImageEncoder as ie #load encoded images # with open("Resource\\data.pickle",'rb')as f: # face_known,face_enco_done = pickle.load(f) def check(face,test_face): face_known,face_enco_done=ie.img_enc(face) face_loca = [] face_enco = [] face_name =[] #to read video and capture attendance img = cv2.imread(test_face) #small_frame = cv2.resize(frame,(0,0),fx = 0.25,fy = 0.25) rgb_frame = img#small_frame#[:,:,::-1] if True: face_loca = fr.face_locations(rgb_frame) face_enco = fr.face_encodings(rgb_frame,face_loca) face_name = [] for face_enc in face_enco: matches = fr.compare_faces(face_enco_done,face_enc) name = "Unknown_Unknown" face_distance = fr.face_distance(face_enco_done,face_enc) best_match = np.argmin(face_distance) if matches[best_match]: return True else: return False # to add a box on the detected face ## for (top, right, bottom, left), name in zip(face_loca, face_name): ## # Draw a box around the face ## cv2.rectangle(frame, (left-20, top-20), (right+20, bottom+20), (255, 0, 0), 2) ## ## # Draw a label with a name below the face ## cv2.rectangle(frame, (left-20, bottom -15), (right+20, bottom+20), (255, 0, 0), cv2.FILLED) ## font = cv2.FONT_HERSHEY_DUPLEX ## cv2.putText(frame, name, (left -20, bottom + 15), font, 1.0, (255, 255, 255), 2)