File size: 11,087 Bytes
d26280a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import re
import textwrap

import gradio as gr
from bs4 import BeautifulSoup

from modules import chat
from modules.logging_colors import logger

from .chromadb import add_chunks_to_collector, make_collector
from .download_urls import download_urls

params = {
    'chunk_count': 5,
    'chunk_count_initial': 10,
    'time_weight': 0,
    'chunk_length': 700,
    'chunk_separator': '',
    'strong_cleanup': False,
    'threads': 4,
}

collector = make_collector()
chat_collector = make_collector()


def feed_data_into_collector(corpus, chunk_len, chunk_sep):
    global collector

    # Defining variables
    chunk_len = int(chunk_len)
    chunk_sep = chunk_sep.replace(r'\n', '\n')
    cumulative = ''

    # Breaking the data into chunks and adding those to the db
    cumulative += "Breaking the input dataset...\n\n"
    yield cumulative
    if chunk_sep:
        data_chunks = corpus.split(chunk_sep)
        data_chunks = [[data_chunk[i:i + chunk_len] for i in range(0, len(data_chunk), chunk_len)] for data_chunk in data_chunks]
        data_chunks = [x for y in data_chunks for x in y]
    else:
        data_chunks = [corpus[i:i + chunk_len] for i in range(0, len(corpus), chunk_len)]

    cumulative += f"{len(data_chunks)} chunks have been found.\n\nAdding the chunks to the database...\n\n"
    yield cumulative
    add_chunks_to_collector(data_chunks, collector)
    cumulative += "Done."
    yield cumulative


def feed_file_into_collector(file, chunk_len, chunk_sep):
    yield 'Reading the input dataset...\n\n'
    text = file.decode('utf-8')
    for i in feed_data_into_collector(text, chunk_len, chunk_sep):
        yield i


def feed_url_into_collector(urls, chunk_len, chunk_sep, strong_cleanup, threads):
    all_text = ''
    cumulative = ''

    urls = urls.strip().split('\n')
    cumulative += f'Loading {len(urls)} URLs with {threads} threads...\n\n'
    yield cumulative
    for update, contents in download_urls(urls, threads=threads):
        yield cumulative + update

    cumulative += 'Processing the HTML sources...'
    yield cumulative
    for content in contents:
        soup = BeautifulSoup(content, features="lxml")
        for script in soup(["script", "style"]):
            script.extract()

        strings = soup.stripped_strings
        if strong_cleanup:
            strings = [s for s in strings if re.search("[A-Za-z] ", s)]

        text = '\n'.join([s.strip() for s in strings])
        all_text += text

    for i in feed_data_into_collector(all_text, chunk_len, chunk_sep):
        yield i


def apply_settings(chunk_count, chunk_count_initial, time_weight):
    global params
    params['chunk_count'] = int(chunk_count)
    params['chunk_count_initial'] = int(chunk_count_initial)
    params['time_weight'] = time_weight
    settings_to_display = {k: params[k] for k in params if k in ['chunk_count', 'chunk_count_initial', 'time_weight']}
    yield f"The following settings are now active: {str(settings_to_display)}"


def custom_generate_chat_prompt(user_input, state, **kwargs):
    global chat_collector

    # get history as being modified when using regenerate.
    history = kwargs['history']

    if state['mode'] == 'instruct':
        results = collector.get_sorted(user_input, n_results=params['chunk_count'])
        additional_context = '\nYour reply should be based on the context below:\n\n' + '\n'.join(results)
        user_input += additional_context
    else:

        def make_single_exchange(id_):
            output = ''
            output += f"{state['name1']}: {history['internal'][id_][0]}\n"
            output += f"{state['name2']}: {history['internal'][id_][1]}\n"
            return output

        if len(history['internal']) > params['chunk_count'] and user_input != '':
            chunks = []
            hist_size = len(history['internal'])
            for i in range(hist_size - 1):
                chunks.append(make_single_exchange(i))

            add_chunks_to_collector(chunks, chat_collector)
            query = '\n'.join(history['internal'][-1] + [user_input])
            try:
                best_ids = chat_collector.get_ids_sorted(query, n_results=params['chunk_count'], n_initial=params['chunk_count_initial'], time_weight=params['time_weight'])
                additional_context = '\n'
                for id_ in best_ids:
                    if history['internal'][id_][0] != '<|BEGIN-VISIBLE-CHAT|>':
                        additional_context += make_single_exchange(id_)

                logger.warning(f'Adding the following new context:\n{additional_context}')
                state['context'] = state['context'].strip() + '\n' + additional_context
                kwargs['history'] = {
                    'internal': [history['internal'][i] for i in range(hist_size) if i not in best_ids],
                    'visible': ''
                }
            except RuntimeError:
                logger.error("Couldn't query the database, moving on...")

    return chat.generate_chat_prompt(user_input, state, **kwargs)


def remove_special_tokens(string):
    pattern = r'(<\|begin-user-input\|>|<\|end-user-input\|>|<\|injection-point\|>)'
    return re.sub(pattern, '', string)


def input_modifier(string, state, is_chat=False):
    if is_chat:
        return string

    # Find the user input
    pattern = re.compile(r"<\|begin-user-input\|>(.*?)<\|end-user-input\|>", re.DOTALL)
    match = re.search(pattern, string)
    if match:
        user_input = match.group(1).strip()

        # Get the most similar chunks
        results = collector.get_sorted(user_input, n_results=params['chunk_count'])

        # Make the injection
        string = string.replace('<|injection-point|>', '\n'.join(results))

    return remove_special_tokens(string)


def ui():
    with gr.Accordion("Click for more information...", open=False):
        gr.Markdown(textwrap.dedent("""

        ## About

        This extension takes a dataset as input, breaks it into chunks, and adds the result to a local/offline Chroma database.

        The database is then queried during inference time to get the excerpts that are closest to your input. The idea is to create an arbitrarily large pseudo context.

        The core methodology was developed and contributed by kaiokendev, who is working on improvements to the method in this repository: https://github.com/kaiokendev/superbig

        ## Data input

        Start by entering some data in the interface below and then clicking on "Load data".

        Each time you load some new data, the old chunks are discarded.

        ## Chat mode

        #### Instruct

        On each turn, the chunks will be compared to your current input and the most relevant matches will be appended to the input in the following format:

        ```
        Consider the excerpts below as additional context:
        ...
        ```

        The injection doesn't make it into the chat history. It is only used in the current generation.

        #### Regular chat

        The chunks from the external data sources are ignored, and the chroma database is built based on the chat history instead. The most relevant past exchanges relative to the present input are added to the context string. This way, the extension acts as a long term memory.

        ## Notebook/default modes

        Your question must be manually specified between `<|begin-user-input|>` and `<|end-user-input|>` tags, and the injection point must be specified with `<|injection-point|>`.

        The special tokens mentioned above (`<|begin-user-input|>`, `<|end-user-input|>`, and `<|injection-point|>`) are removed in the background before the text generation begins.

        Here is an example in Vicuna 1.1 format:

        ```
        A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

        USER:

        <|begin-user-input|>
        What datasets are mentioned in the text below?
        <|end-user-input|>

        <|injection-point|>

        ASSISTANT:
        ```

        ⚠️  For best results, make sure to remove the spaces and new line characters after `ASSISTANT:`.

        *This extension is currently experimental and under development.*

        """))

    with gr.Row():
        with gr.Column(min_width=600):
            with gr.Tab("Text input"):
                data_input = gr.Textbox(lines=20, label='Input data')
                update_data = gr.Button('Load data')

            with gr.Tab("URL input"):
                url_input = gr.Textbox(lines=10, label='Input URLs', info='Enter one or more URLs separated by newline characters.')
                strong_cleanup = gr.Checkbox(value=params['strong_cleanup'], label='Strong cleanup', info='Only keeps html elements that look like long-form text.')
                threads = gr.Number(value=params['threads'], label='Threads', info='The number of threads to use while downloading the URLs.', precision=0)
                update_url = gr.Button('Load data')

            with gr.Tab("File input"):
                file_input = gr.File(label='Input file', type='binary')
                update_file = gr.Button('Load data')

            with gr.Tab("Generation settings"):
                chunk_count = gr.Number(value=params['chunk_count'], label='Chunk count', info='The number of closest-matching chunks to include in the prompt.')
                gr.Markdown('Time weighting (optional, used in to make recently added chunks more likely to appear)')
                time_weight = gr.Slider(0, 1, value=params['time_weight'], label='Time weight', info='Defines the strength of the time weighting. 0 = no time weighting.')
                chunk_count_initial = gr.Number(value=params['chunk_count_initial'], label='Initial chunk count', info='The number of closest-matching chunks retrieved for time weight reordering in chat mode. This should be >= chunk count. -1 = All chunks are retrieved. Only used if time_weight > 0.')

                update_settings = gr.Button('Apply changes')

            chunk_len = gr.Number(value=params['chunk_length'], label='Chunk length', info='In characters, not tokens. This value is used when you click on "Load data".')
            chunk_sep = gr.Textbox(value=params['chunk_separator'], label='Chunk separator', info='Used to manually split chunks. Manually split chunks longer than chunk length are split again. This value is used when you click on "Load data".')
        with gr.Column():
            last_updated = gr.Markdown()

    update_data.click(feed_data_into_collector, [data_input, chunk_len, chunk_sep], last_updated, show_progress=False)
    update_url.click(feed_url_into_collector, [url_input, chunk_len, chunk_sep, strong_cleanup, threads], last_updated, show_progress=False)
    update_file.click(feed_file_into_collector, [file_input, chunk_len, chunk_sep], last_updated, show_progress=False)
    update_settings.click(apply_settings, [chunk_count, chunk_count_initial, time_weight], last_updated, show_progress=False)