File size: 69,409 Bytes
d26280a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
import os

os.environ["WANDB_MODE"] = "offline"
# os.environ["WANDB_DISABLED"] = "true"

import json
import math
import random
import shutil
import sys
import threading
import time
import traceback
from datetime import datetime
from pathlib import Path

import gradio as gr
import pandas as pd
import torch
import transformers

from functools import partial

from .custom_scheduler import FPSchedulerTrainer, FPNEFtuneTrainer

from .matplotgraph import create_graph
from .train_utils import get_available_loras_local, precise_cut, sliding_block_cut, download_file_from_url

from datasets import Dataset, load_dataset
from peft import (
    LoraConfig,
    get_peft_model,
    prepare_model_for_kbit_training,
    set_peft_model_state_dict
)
from peft.utils.other import \
    TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING as model_to_lora_modules
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
)

from modules import shared, utils
from modules.ui import create_refresh_button

from modules.evaluate import (
    calculate_perplexity,
    generate_markdown_table,
    save_past_evaluations
)
from modules.logging_colors import logger
from modules.models import reload_model
from modules.utils import natural_keys

import warnings
warnings.filterwarnings(action = "ignore", message="torch.utils.checkpoint:")
warnings.filterwarnings(action = "ignore", message="`do_sample` is set to `False`")

params = {
        "display_name": "Training PRO",
        "is_tab": True
}

non_serialized_params = {
        "debug_slicer": False,
        "Lora_sortedByTime": False,
        "stop_at_loss": 0,
        "save_steps_under_loss": 0.0,
        "save_checkpoint_now": False,
        "training_loop": False,
        "current_stability": 0,
        "save_epochs": 0,
        "checkpoint_offset": 0,
        "epoch_offset":0,
        "safe_serialization": False,
}

MODEL_CLASSES = {v[1]: v[0] for v in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.items()}

PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after", "stop_at_loss", "add_eos_token", "min_chars", "report_to", "precize_slicing_overlap", "add_eos_token_type", "save_steps_under_loss", "add_bos_token", "training_projection","sliding_window","warmup_ratio","grad_accumulation","neft_noise_alpha"]
WANT_INTERRUPT = False

train_log = {}
train_template = {}
train_log_graph = []
train_choices = ["all","q-k-v-o","q-k-v","k-v-down","q-v"]

statistics = {
			'loss': [],
			'lr': [],
}

RED = "\033[91m"
YELLOW = "\033[93m"
GREEN = "\033[92m"
RESET = "\033[0m"

def ui():

    with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
        tmp = gr.State('')
        with gr.Row():
            with gr.Column():
                # YY.MM.DD
                gr.Markdown("`Ver: 23.10.20 (REV2)` This is enhanced version of QLora Training. [Maintained by FP](https://github.com/FartyPants/Training_PRO/tree/main)")

                with gr.Row():
                    with gr.Column(scale=5):
                        with gr.Row():
                            copy_from = gr.Dropdown(label='Copy parameters from', value='None', choices=get_available_loras_local(non_serialized_params['Lora_sortedByTime']), elem_classes=['slim-dropdown'])
                            create_refresh_button(copy_from, lambda: None, lambda: {'choices': get_available_loras_local(non_serialized_params['Lora_sortedByTime'])}, 'refresh-button')
                    with gr.Column():
                        sort_byTime = gr.Checkbox(label='Sort list by Date', value=False, info='Sorts Loras by date created.', elem_classes=['no-background'])                        

                with gr.Row():
                    with gr.Column(scale=5):
                        lora_name = gr.Textbox(label='Name', info='The name of your new LoRA file')
    
                    with gr.Column():
                        always_override = gr.Checkbox(label='Override Existing Files', value=False, info='If the name is the same, checking will replace the existing file, and unchecking will load and continue from it (the rank must be the same).', elem_classes=['no-background'])

                with gr.Row():
                    with gr.Column():
                        lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='Also called dimension count. Higher values = larger file, more content control. Smaller values = smaller file, less control. Use 4 or 8 for style, 128 or 256 to teach, 1024+ for fine-detail on big data. More VRAM is needed for higher ranks.')
                        lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
                        batch_size = gr.Slider(visible= False, label='Batch Size', value=0, minimum=0, maximum=1024, step=4, info='Now Replaced with Gradient accumulation. Keeping it for sake of old saved data')
                        micro_batch_size = gr.Slider(label='True Batch Size', value=4, minimum=1, maximum=128, step=1, info='Specifies how many text blocks per step will be trained. The higher value, the better the concept of training will be, but it requires more GPU memory and it reduces speed.')
                        grad_accumulation = gr.Slider(label='Gradient Accumulation Steps', value=1, minimum=1, maximum=256, step=1, info="Virtually multiplies the Batch Size by averaging the learning over more than one step. VRAM friendly. Evens out loss fluctuations but can also degrade training fidelity.")

                    with gr.Column():
                        stop_at_loss = gr.Slider(label='Stop at loss (Can be changed during training)', minimum=0.0, maximum=3.0, step=0.1, value=0.00, info='The process will automatically stop once the desired loss value is reached.')
                        gr.Markdown(" ")
                        epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
                        learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='In scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
                        lr_scheduler_type = gr.Dropdown(label='LR Scheduler', value='linear', choices=['linear', 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'polynomial', 'inverse_sqrt', 'FP_low_epoch_annealing', 'FP_half_time_annealing','FP_raise_fall_creative'], info='Learning rate scheduler - defines how the learning rate changes over time. Custom schedulers: FP_low_epoch_annealing, FP_half_time_annealing, FP_raise_fall_creative (see README)', elem_classes=['slim-dropdown'])
                        
                with gr.Accordion(label='Checkpoints', open=True):
                    with gr.Row():
                        with gr.Column():
                            save_steps = gr.Number(label='Save every n steps', value=0, info='A checkpoint will be saved every n steps and at each Epoch boundary. (0 = OFF)')
                        with gr.Column():    
                            save_steps_under_loss = gr.Slider(label='Save at 10% Loss change', value=1.8, minimum=0.0, maximum=3.0, step=0.1, info="Saves checkpoints at (or bellow) this loss and then each time loss falls by at least 10% This works independently from 'Save every n steps'")    
                    with gr.Row():        
                        save_chackpoint_now = gr.Button('Queue Checkpoint Now')

                with gr.Accordion(label='Advanced Options', open=True):
                    with gr.Row():
                        with gr.Column():
                            warmup_steps = gr.Number(label='Warmup Steps', value=100, info='Number of max steps used for a linear warmup. Reduces early over-fitting by the first training blocks. Value has precedent over Warmup Ratio. Aligns to the closest multiple of graddient accumulation')
                            warmup_ratio = gr.Slider(label='Warmup Ratio', minimum=0.0, maximum=0.2, step=0.025, value=0.0, info='Ratio of total training steps that will be used for a linear warmup. It applies only if Warmup Step is 0.')
                            neft_noise_alpha = gr.Slider(label='NEFtune noise scale', minimum=0.0, maximum=15, step=1, value=0.0, info='Add noise to the training to improve generalization. [0 - OFF, Starting value to experiment: 5]')
                            training_projection = gr.Radio(value = train_choices[4], label='LLaMA Target Projections', info='Change the targets (LORA is typically q-v)', choices=train_choices)    
                            lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers. This can help reduce overfitting. Most users should leave at default.')
                            optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.', elem_classes=['slim-dropdown'])

                        with gr.Column():
                            train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.')
                            add_bos_token = gr.Checkbox(label='Add BOS token', value=True, info="Adds BOS token for each dataset item")
                            add_eos_token = gr.Checkbox(label='Add EOS token', value=False, info="Adds EOS token for each dataset item")
                            add_eos_token_type = gr.Dropdown(label='EOS placement (Text file)', choices=['Every Block', 'Hard Cut Blocks Only'], value='Every Block', info='', allow_custom_value = False)
                            
                            higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.')
                            report_to = gr.Radio(label="Save detailed logs with", value="None", choices=["None", "wandb", "tensorboard"], interactive=True)
                # for future            
                #with gr.Accordion(label='Dynamic Scheduler', open = False):
                #    ds_min_epochs = gr.Number(label='Minimum Epochs', value='1', info='Minimum epochs that will be always performed before ramp down can be triggered')
                #    ds_max_epochs = gr.Number(label='Maximum Epochs (fallback)', value='50', info='Maximum Epochs before the training will bail out completely (should be a large number)')
                #    ds_loss_trigger = gr.Slider(label='Trigger Loss', minimum=0.0, maximum=2.8, step=0.1, value=1.6, info='Loss at which the ramp down schedule will be triggered')
                #    ds_loss_rolling_window = gr.Number(label='Loss rolling average', value='4', info='Calculate loss by averaging last x numbers to avoid jumps and noise')
                #    ds_epochs_to_ramp = gr.Slider(label='Ramp down ratio', minimum=0.0, maximum=2.0, step=0.1, value=1.00, info='How long the ramp down will last relative to ellapsed steps (before trigger)')
                #    gr.Markdown('These are settings for FP_dynamic_loss_trigger scheduler. The scheduler will do warm up, then hold constant untill a loss falls under Trigger Loss, then it will commence linear ramp down schedule and stop. The length of ramp down is set by Ramp down ratio where (ramp down steps) = ratio * (elapsed steps). (The time to completition shown will be very high untill ramp down is triggered.)')
                        

            with gr.Column():
                with gr.Tab(label='Formatted Dataset'):
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                dataset = gr.Dropdown(choices=get_datasets('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.', elem_classes=['slim-dropdown'])
                                create_refresh_button(dataset, lambda: None, lambda: {'choices': get_datasets('training/datasets', 'json')}, 'refresh-button')
                            with gr.Row():
                                eval_dataset = gr.Dropdown(choices=get_datasets('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The (optional) dataset file used to evaluate the model after training.', elem_classes=['slim-dropdown'])
                                create_refresh_button(eval_dataset, lambda: None, lambda: {'choices': get_datasets('training/datasets', 'json')}, 'refresh-button')

                        with gr.Column():
                            with gr.Row():
                                format = gr.Dropdown(choices=get_datasets('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.', elem_classes=['slim-dropdown'])
                                create_refresh_button(format, lambda: None, lambda: {'choices': get_datasets('training/formats', 'json')}, 'refresh-button')
                            with gr.Row():
                                eval_steps = gr.Number(label='Evaluate every n steps', value=100, info='If an evaluation dataset is given, test it every time this many steps pass.')

                with gr.Tab(label="Text file"):
                    with gr.Row():
                        raw_text_file = gr.Dropdown(choices=get_datasets('training/datasets', 'txt'), value='None', label='Text file', info='The text file to use for training.', elem_classes=['slim-dropdown'])
                        create_refresh_button(raw_text_file, lambda: None, lambda: {'choices': get_datasets('training/datasets', 'txt')}, 'refresh-button')

                    with gr.Row():
                        with gr.Column():
                            precize_slicing_overlap = gr.Checkbox(label='Add Overlapping blocks', value = True)
                            sliding_window = gr.Checkbox(label='DEMENTOR Long-form Learning by FP (Highly Experimental, use low epochs)', value = False, info='Deep Memorization Enforcement Through Overlapping and Repetition. (I named it, so shush). Special process for learning long-form text using low amount of epochs.')
                            #debug_slicer = gr.Checkbox(label='Dump sentencelist.json to logs', value = non_serialized_params['debug_slicer'], info='Debug Slicer')

                        with gr.Column():
                            hard_cut_string = gr.Textbox(label='Hard Cut String', value='\\n\\n\\n', info='String that indicates a cut between logical blocks of text (ex. Ideas or Chapters). Helps prevent unwanted overlap between unrelated ideas.')
                            min_chars = gr.Number(label='Ignore small blocks', value=0, info='Ignore Text blocks that have less or equal characters than this number.')
                with gr.Tab(label="URL"):
                    with gr.Row():
                        with gr.Column():
                            download_file_url = gr.Textbox(label='Download JSON or txt file to datasets (or formats) folder', value='',info='The URL of a file to download. If on github, make sure you get url of the raw file (https://raw.githubusercontent.com/...). If huggin face, make sure the url has /resolve/ in it not /blob/')
                            with gr.Row():
                                download_check_overwrite = gr.Checkbox(label='Overwrite', value=False, info='Overwrite if file exist')
                                download_folder = gr.Radio(label="Destination", value='training/datasets', choices=['training/datasets', 'training/formats'], interactive=True)
                            download_button = gr.Button('Download')
                            download_status = gr.Textbox(label='Download Status', value='', interactive=False)
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            cutoff_len = gr.Slider(label='Chunk Length (Cutoff Length)', minimum=32, maximum=2048, value=256, step=32, info='The maximum length of a chunk (in tokens). Applies to both JSON dataset and text files. Higher values require much more VRAM.')
                with gr.Row():
                    with gr.Column():
                        check_dataset_btn = gr.Button('Verify Dataset/Text File and suggest data entries')    
                        check_dataset_txt = gr.Textbox(label='Dataset info', value='')

                with gr.Row():
                    start_button = gr.Button("Start LoRA Training", variant='primary')
                    stop_button = gr.Button("Interrupt")

                with gr.Accordion(label="Graph", open=True):
                    with gr.Row():
                        # show_actions_button = False - we use old gradio
                        plot_graph = gr.LinePlot(x="epoch", y="value", title="Loss Metrics", overlay_point=True, tooltip=["epoch", "value"], x_lim=[0, 1], y_lim=[0, 3.5], width=500, height=250) 
 
                output = gr.Markdown(value="Ready")

    with gr.Tab('Perplexity evaluation', elem_id='evaluate-tab'):
        with gr.Row():
            with gr.Column():
                models = gr.Dropdown(utils.get_available_models(), label='Models', multiselect=True)
                evaluate_text_file = gr.Dropdown(choices=['wikitext', 'ptb', 'ptb_new'] + get_datasets('training/datasets', 'txt')[1:], value='wikitext', label='Input dataset', info='The text file on which the model will be evaluated. The first options are automatically downloaded: wikitext, ptb, and ptb_new. The next options are your local text files under training/datasets.')
                with gr.Row():
                    with gr.Column():
                        stride_length = gr.Slider(label='Stride', minimum=1, maximum=2048, value=512, step=1, info='Used to make the evaluation faster at the cost of accuracy. 1 = slowest but most accurate. 512 is a common value.')

                    with gr.Column():
                        max_length = gr.Slider(label='max_length', minimum=0, maximum=shared.settings['truncation_length_max'], value=0, step=1, info='The context for each evaluation. If set to 0, the maximum context length for the model will be used.')

                with gr.Row():
                    start_current_evaluation = gr.Button("Evaluate loaded model")
                    start_evaluation = gr.Button("Evaluate selected models")
                    stop_evaluation = gr.Button("Interrupt")

            with gr.Column():
                evaluation_log = gr.Markdown(value='')

        evaluation_table = gr.Dataframe(value=generate_markdown_table(), interactive=True)
        with gr.Row():
            save_comments = gr.Button('Save comments', elem_classes="small-button")
            refresh_table = gr.Button('Refresh the table', elem_classes="small-button")

    # Training events
    all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after, stop_at_loss, add_eos_token, min_chars, report_to, precize_slicing_overlap, add_eos_token_type, save_steps_under_loss, add_bos_token, training_projection,sliding_window,warmup_ratio,grad_accumulation, neft_noise_alpha]

    def fix_old_version(batch_size_val,micro_batch_size_val, grad_accumulation_val):
        if batch_size_val>0:
            gradient_acc =  batch_size_val // micro_batch_size_val
            print(f"Using Old version of Batch Size ({batch_size_val}) to set Gradient Accumulation: {gradient_acc}")
            return gradient_acc

        return grad_accumulation_val

    
    copy_from.change(partial(do_copy_params, all_params= all_params), copy_from, all_params).then(fix_old_version,[batch_size,micro_batch_size, grad_accumulation],grad_accumulation)
    start_button.click(do_train, all_params, [output,plot_graph])
    stop_button.click(do_interrupt, None, None, queue=False)
    higher_rank_limit.change(change_rank_limit, [higher_rank_limit], [lora_rank, lora_alpha])

    def trigger_stop_at_loss(stop_at_loss_value):
        non_serialized_params.update({"stop_at_loss": stop_at_loss_value})
        if non_serialized_params['training_loop']:
            print(f"Queue: [Stop at loss Change] to {stop_at_loss_value}")


    stop_at_loss.change(trigger_stop_at_loss, stop_at_loss, None)

    def trigger_save_checkpoint():
        non_serialized_params.update({"save_checkpoint_now": True})
        if non_serialized_params['training_loop']:
            print("Queue: [Save checkpoint] Checkpoint will be saved after the current step is finished.")
        else:
            print("Use during the training to save the checkpoint at any time.")


    def update_button():
        return gr.Button.update('[Checkpoint in Queue]', variant='stop', interactive=True)

    def update_button2():
        time.sleep(1.0)
        return gr.Button.update('Queue Checkpoint Now', variant='secondary',interactive = True)

    save_chackpoint_now.click(trigger_save_checkpoint, None, None).then(update_button, None,save_chackpoint_now).then(update_button2, None,save_chackpoint_now)

    dataset_calc_params = [save_steps,micro_batch_size, epochs, cutoff_len, dataset, format, raw_text_file, warmup_steps, hard_cut_string, min_chars, precize_slicing_overlap,sliding_window,warmup_ratio,grad_accumulation]

    def check_dataset(save_steps:int, micro_batch_size: int, epochs: int, cutoff_len: int, dataset:str, format:str, raw_text_file:str, warmup_steps:int, hard_cut_string:str, min_chars:int, precize_slicing_overlap:bool,sliding_window:bool,warmup_ratio:float,grad_accumulation:int):
        result = "Specify JSON dastaset or Text file"
        total_blocks = 0
        if shared.tokenizer is None:
            yield "Tokenizer is not available. Please Load some Model first."
            return
        
        
        if raw_text_file not in ['None', '']:
            logger.info("Loading Text file...")
            fullpath = clean_path('training/datasets', f'{raw_text_file}')
            fullpath = Path(fullpath)
            if fullpath.is_dir():
                logger.info('Training path directory {}'.format(raw_text_file))
                raw_text = ""
                file_paths = sorted(fullpath.glob('*.txt'), key=lambda path: natural_keys(path.name))
                for file_path in file_paths:
                    if file_path.is_file():
                        with file_path.open('r', encoding='utf-8') as file:
                            raw_text += file.read().replace('\r', '')

                        logger.info(f"Loaded training file: {file_path.name}")
            else:
                try:
                    with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file:
                        raw_text = file.read().replace('\r', '')
                except:
                    yield f"{raw_text_file}.txt doesn't seem to exsist anymore... check your training/datasets folder"
                    return
            
 
            if min_chars<0:
                min_chars = 0

            # == New more precise slicing on sentence boundary ==
            if sliding_window:
                text_chunks = sliding_block_cut(raw_text, min_chars, False, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])
            else:
                text_chunks = precise_cut(raw_text, precize_slicing_overlap, min_chars, False, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])

            total_blocks = len(text_chunks)
            result = f"Text: ({raw_text_file}.txt) has {total_blocks} blocks (Block Size {cutoff_len} tokens)"
            del text_chunks
       
        else:
            if dataset in ['None', '']:
                yield "Select dataset or text file."
                return 

            if format in ['None', '']:
                yield "Select format choice for dataset."
                return

            with open(clean_path('training/formats', f'{format}.json'), 'r', encoding='utf-8-sig') as formatFile:
                format_data: dict[str, str] = json.load(formatFile)

            def generate_prompt(data_point: dict[str, str]):
                for options, data in format_data.items():
                    if set(options.split(',')) == set(x[0] for x in data_point.items() if (type(x[1]) is str and len(x[1].strip()) > 0)):
                        for key, val in data_point.items():
                            if type(val) is str:
                                data = data.replace(f'%{key}%', val)
                        return data
                raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')

            def tokenize_dummy(prompt):

                input_ids = shared.tokenizer.encode(prompt, truncation=True, max_length=cutoff_len)
                labels = [1] * len(input_ids)
                input_ids = torch.tensor(input_ids)
                return {
                    "input_ids": input_ids,
                    "labels": labels,
                    "attention_mask": input_ids.ne(shared.tokenizer.pad_token_id),
                }

            def generate_and_tokenize_prompt(data_point):
                prompt = generate_prompt(data_point)
                return tokenize_dummy(prompt)

            logger.info("Loading JSON datasets...")
            data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
            
            data_keys = [] 

            if data:
                if 'train' in data:  # Check if the 'train' split exists in the dataset
                    data_keys = list(data['train'][0].keys())
                    print("Data Keys:", data_keys)
            else:
                print("The dataset is empty.")

            train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
            total_blocks = train_data.num_rows

            result = f"Dataset: ({dataset}.json) has {total_blocks} blocks @ length = {cutoff_len} tokens\n(Keys: {data_keys} - Format: {format}.json): "

            #for options, data in format_data.items():
            #    format_keys = options.split(',')
            #    result += f"{format_keys}, "
            #result = result.rstrip()    
            #result = result.rstrip(',')  

        if total_blocks>0:
            number_ofSteps = int(math.ceil(total_blocks / micro_batch_size) * epochs) 
            num_stepsPer_epoch = int(math.ceil(number_ofSteps/epochs))
            min_warm = math.ceil(100 / grad_accumulation)

            warmup_steps_suggest = min(int(min_warm*grad_accumulation), int(math.ceil(number_ofSteps * 0.1)))
            warmup_steps_suggest = min(warmup_steps_suggest,num_stepsPer_epoch)

            save_each_n_min = int(math.ceil(number_ofSteps/10))
            save_each_n_max = int(math.ceil(number_ofSteps/5))
            gradient_accumulation_max = int(total_blocks)//micro_batch_size

 
            result += f"\n[Batch Size: {micro_batch_size}, Epochs: {epochs}, Gradient Accumulation: {grad_accumulation}]\n"
            result += f"Total number of steps: {number_ofSteps}\n"
            result += f"Steps per each Epoch: {num_stepsPer_epoch}\n"
            result += f"Suggestions:\n"
            result += f"Checkpoints: Save every {save_each_n_min} - {save_each_n_max} steps (Current: {int(save_steps)})\n"
            result += f"Warmup steps: {warmup_steps_suggest} (Current: {int(warmup_steps)})"
            if gradient_accumulation_max < grad_accumulation: 
                result += f"\n\nWARNING: Gradient Accumulation {grad_accumulation} is too high: It should be below {gradient_accumulation_max}"


        yield result
        return
    
    check_dataset_btn.click(check_dataset, dataset_calc_params ,check_dataset_txt)

    # Evaluation events. For some reason, the interrupt event
    # doesn't work with the .then() syntax, so I write them one
    # by one in this ugly but functional way.
    ev = start_evaluation.click(calculate_perplexity, [models, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False)
    start_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False)

    start_current_evaluation.click(lambda: ['current model'], None, tmp)
    ev_cur = start_current_evaluation.click(calculate_perplexity, [tmp, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False)
    start_current_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False)

    stop_evaluation.click(None, None, None, cancels=[ev, ev_cur], queue=False)
    refresh_table.click(generate_markdown_table, None, evaluation_table, show_progress=True)
    save_comments.click(
        save_past_evaluations, evaluation_table, None).then(
        lambda: "Comments saved.", None, evaluation_log, show_progress=False)

    def reload_lora():
        return gr.Dropdown.update(choices=get_available_loras_local(non_serialized_params['Lora_sortedByTime']))
 
    # nonserialized items

    sort_byTime.change(lambda x: non_serialized_params.update({"Lora_sortedByTime": x}), sort_byTime, None).then(reload_lora,None,copy_from) 
    #debug_slicer.change(lambda x: non_serialized_params.update({"debug_slicer": x}), debug_slicer, None)

    def update_dataset():
        return gr.update(choices=get_datasets('training/datasets', 'json')), gr.update(choices=get_datasets('training/datasets', 'txt'))

    download_button.click(download_file_from_url, [download_file_url,download_check_overwrite,download_folder] , download_status).then(update_dataset,None,[dataset , raw_text_file])

def get_datasets(path: str, ext: str):
    # include subdirectories for raw txt files to allow training from a subdirectory of txt files
    #if ext == "txt":
    #    return ['None'] + sorted(set([k.stem for k in list(Path(path).glob('txt')) + list(Path(path).glob('*/')) if k.stem != 'put-trainer-datasets-here']), key=natural_keys)

    return ['None'] + sorted(set([k.stem for k in Path(path).glob(f'*.{ext}') if k.stem != 'put-trainer-datasets-here']), key=natural_keys)

def do_interrupt():
    global WANT_INTERRUPT
    WANT_INTERRUPT = True


def do_copy_params(lora_name: str, all_params):

    if lora_name:
        f_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}/training_parameters.json"
        if Path(f_name).is_file():
            with open(f_name, 'r', encoding='utf-8') as format_file:
                params: dict[str, str] = json.load(format_file)
        else:
            params = {}
    else:
        params = {}        

    result = list()
    for i in range(0, len(PARAMETERS)):
        key = PARAMETERS[i]
        if key in params:
            result.append(params[key])
        else:
            result.append(all_params[i])

    return result


def change_rank_limit(use_higher_ranks: bool):
    mult = 2 if use_higher_ranks else 1
    return {"maximum": 1024 * mult, "__type__": "update"}, {"maximum": 2048 * mult, "__type__": "update"}


def clean_path(base_path: str, path: str):
    """Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
    path = path.replace('\\', '/').replace('..', '_')
    if base_path is None:
        return path

    return f'{Path(base_path).absolute()}/{path}'


def backup_adapter(input_folder):
    # Get the creation date of the file adapter_model.bin
    try:
        adapter_file = Path(f"{input_folder}/adapter_model.bin")
        if adapter_file.is_file():

            logger.info("Backing up existing LoRA adapter...")
            creation_date = datetime.fromtimestamp(adapter_file.stat().st_ctime)
            creation_date_str = creation_date.strftime("Backup-%Y-%m-%d")

            # Create the new subfolder
            subfolder_path = Path(f"{input_folder}/{creation_date_str}")
            subfolder_path.mkdir(parents=True, exist_ok=True)

            # Check if the file already exists in the subfolder
            backup_adapter_file = Path(f"{input_folder}/{creation_date_str}/adapter_model.bin")
            if backup_adapter_file.is_file():
                print(" - Backup already exists. Skipping backup process.")
                return

            # Copy existing files to the new subfolder
            existing_files = Path(input_folder).iterdir()
            for file in existing_files:
                if file.is_file():
                    shutil.copy2(file, subfolder_path)
    except Exception as e:
        print("An error occurred in backup_adapter:", str(e))


def calc_trainable_parameters(model):
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        num_params = param.numel()
        # if using DS Zero 3 and the weights are initialized empty
        if num_params == 0 and hasattr(param, "ds_numel"):
            num_params = param.ds_numel

        all_param += num_params
        if param.requires_grad:
            trainable_params += num_params

    return trainable_params, all_param



def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str, precize_slicing_overlap: bool, add_eos_token_type: str, save_steps_under_loss: float, add_bos_token: bool, training_projection: str,sliding_window:bool,warmup_ratio:float, grad_accumulation: int,neft_noise_alpha:float):

    if shared.args.monkey_patch:
        from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
            replace_peft_model_with_int4_lora_model
        )
        replace_peft_model_with_int4_lora_model()
    
    global train_log_graph
    global WANT_INTERRUPT
    WANT_INTERRUPT = False

    statistics['loss'] = []

    statistics['loss'].append({'epoch': 0, 'value': 0})
    zero_pd = pd.DataFrame(statistics['loss'])

    # == Input validation / processing ==
    yield "Preparing the input...", zero_pd
    lora_file_path = clean_path(None, lora_name)
    if lora_file_path.strip() == '':
        yield "Missing or invalid LoRA file name input.", zero_pd
        return

    lora_file_path = f"{Path(shared.args.lora_dir)}/{lora_file_path}"
    actual_lr = float(learning_rate)
    model_type = type(shared.model).__name__

    if model_type in MODEL_CLASSES:
        model_id = MODEL_CLASSES[model_type]
    else:
        model_id = "llama"
        if model_type == "PeftModelForCausalLM":
            if len(shared.lora_names) > 0:
                yield "You are trying to train a LoRA while you already have another LoRA loaded. This will work, but may have unexpected effects. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*", zero_pd
                logger.warning("Training LoRA over top of another LoRA. May have unexpected effects.")
            else:
                yield "Model ID not matched due to LoRA loading. Consider reloading base model. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*", zero_pd
                logger.warning("Model ID not matched due to LoRA loading. Consider reloading base model.")
        else:
            yield "LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. Unexpected errors may follow. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*", zero_pd
            logger.warning(f"LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. (Found model type: {model_type})")

        time.sleep(5)

    if shared.args.loader == 'GPTQ-for-LLaMa' and not shared.args.monkey_patch:
        yield "LoRA training with GPTQ-for-LLaMa requires loading with `--monkey-patch`", zero_pd
        return

    if cutoff_len <= 0 or micro_batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
        yield "Cannot input zeroes.", zero_pd
        return

    #in new version we dumped this in favor of grad_accumulation
    #set it to zero fo new save
    batch_size = 0

    gradient_accumulation_steps = grad_accumulation #batch_size // micro_batch_size
    shared.tokenizer.pad_token_id = 0
    shared.tokenizer.padding_side = "left"

    def encode(text, prepend_bos_token):
       
        result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len)
        # Check if the first two tokens are BOS
        if len(result) >= 2 and result[:2] == [shared.tokenizer.bos_token_id, shared.tokenizer.bos_token_id]:
            result = result[1:]

        if not prepend_bos_token and result[0] == shared.tokenizer.bos_token_id:
            result = result[1:]
        return result

    def tokenize(prompt, append_eos_token=False, prepend_bos_token = False):

        if train_only_after == '' or train_only_after not in prompt:
            input_ids = encode(prompt, prepend_bos_token)

            if append_eos_token and input_ids[-1] != shared.tokenizer.eos_token_id and len(input_ids) < cutoff_len:
                input_ids.append(shared.tokenizer.eos_token_id)

            input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids
            
            labels = [1] * len(input_ids)
        else:
            ind = prompt.index(train_only_after) + len(train_only_after)
            before_tokens = encode(prompt[:ind], prepend_bos_token)
            after_tokens = encode(prompt[ind:], False)

            if append_eos_token and after_tokens[-1] != shared.tokenizer.eos_token_id:
                after_tokens.append(shared.tokenizer.eos_token_id)

            full_length = len(after_tokens) + len(before_tokens)
            if full_length > cutoff_len:
                after_tokens = after_tokens[:cutoff_len - len(before_tokens)]
            else:
                before_tokens = [shared.tokenizer.pad_token_id] * (cutoff_len - full_length) + before_tokens

            input_ids = before_tokens + after_tokens
            labels = [-100] * len(before_tokens) + [1] * len(after_tokens)

        input_ids = torch.tensor(input_ids)
        return {
            "input_ids": input_ids,
            "labels": labels,
            "attention_mask": input_ids.ne(shared.tokenizer.pad_token_id),
        }

    train_template.clear()
            
    #reset stuff
    print(f"*** LoRA: {lora_name} ***")
    non_serialized_params.update({"stop_at_loss": stop_at_loss})
    non_serialized_params.update({"save_steps_under_loss": save_steps_under_loss+0.01})
    non_serialized_params.update({"save_checkpoint_now": False})
    non_serialized_params.update({"training_loop": False})
    non_serialized_params.update({"current_stability": 0})
    non_serialized_params.update({"save_epochs": 0})
    non_serialized_params.update({"checkpoint_offset": 0})
    non_serialized_params.update({"epoch_offset": 0})
    train_log_graph.clear()
  
     # == Prep the dataset, format, etc ==
    if raw_text_file not in ['None', '']:
        train_template["template_type"] = "raw_text"
        logger.info("Loading text file...")
        fullpath = clean_path('training/datasets', f'{raw_text_file}')
        fullpath = Path(fullpath)
        if fullpath.is_dir():
            logger.info('Training path directory {}'.format(raw_text_file))
            raw_text = ""
            file_paths = sorted(fullpath.glob('*.txt'), key=lambda path: natural_keys(path.name))
            for file_path in file_paths:
                if file_path.is_file():
                    with file_path.open('r', encoding='utf-8') as file:
                        raw_text += file.read().replace('\r', '')

                    logger.info(f"Loaded training file: {file_path.name}")
        else:
            with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file:
                raw_text = file.read().replace('\r', '')
        
        # FPHAM PRECISE SLICING        
        if min_chars<0:
            min_chars = 0

        add_EOS_to_all = add_eos_token and add_eos_token_type == 'Every Block'
        add_EOS_to_HC = add_eos_token and add_eos_token_type != 'Every Block'

        #print (f"add_eos_token {add_eos_token}, add_EOS_to_all {add_EOS_to_all}, add_EOS_to_HC {add_EOS_to_HC}")

        # == New more precise slicing on sentence boundary ==
        if sliding_window:
            text_chunks = sliding_block_cut(raw_text, min_chars, add_EOS_to_HC, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])
        else:
            text_chunks = precise_cut(raw_text, precize_slicing_overlap, min_chars, add_EOS_to_HC, cutoff_len, hard_cut_string,non_serialized_params['debug_slicer'])

        train_data = Dataset.from_list([tokenize(x, add_EOS_to_all, add_bos_token) for x in text_chunks])
        if add_EOS_to_all:
            print(f"Added EOS to {len(text_chunks)} blocks") 

        print(f"All Data Blocks: {len(text_chunks)}")

        del text_chunks
        eval_data = None
    else:
        if dataset in ['None', '']:
            yield "Missing dataset choice input, cannot continue.", zero_pd
            return

        if format in ['None', '']:
            yield "Missing format choice input, cannot continue.", zero_pd
            return

        train_template["template_type"] = "dataset"

        with open(clean_path('training/formats', f'{format}.json'), 'r', encoding='utf-8-sig') as formatFile:
            format_data: dict[str, str] = json.load(formatFile)

        # == store training prompt ==
        for _, value in format_data.items():
            prompt_key = f"template_{len(train_template)}"
            train_template[prompt_key] = value

        def generate_prompt(data_point: dict[str, str]):
            for options, data in format_data.items():
                if set(options.split(',')) == set(x[0] for x in data_point.items() if (type(x[1]) is str and len(x[1].strip()) > 0)):
                    for key, val in data_point.items():
                        if type(val) is str:
                            data = data.replace(f'%{key}%', val)
                    return data
            raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')

        def generate_and_tokenize_prompt(data_point):
            prompt = generate_prompt(data_point)
            return tokenize(prompt, add_eos_token, add_bos_token)

        logger.info("Loading JSON datasets...")
        data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
        train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))

        print(f"BOS: {add_bos_token} EOS: {add_eos_token}") 
        print(f"Data Blocks: {train_data.num_rows}")

        if eval_dataset == 'None':
            eval_data = None
        else:
            eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
            eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))

    # == We MUST reload model if it went through any previous training, even failed one ==
    if shared.model_dirty_from_training:
        selected_model = shared.model_name
        if selected_model:
            print("\033[1;31;1m(Model has been modified by previous training, it needs to be reloaded...)\033[0;37;0m")
            try:
                yield f"Reloading {selected_model}...", zero_pd
                reload_model()
                shared.tokenizer.pad_token_id = 0
                shared.tokenizer.padding_side = "left"

                if shared.model is not None:
                    print("Model reloaded OK, continue with training.")
                else:
                    return f"Failed to load {selected_model}."
            except:
                exc = traceback.format_exc()
                logger.error('Failed to reload the model.')
                print(exc)
                return exc.replace('\n', '\n\n')

    # == Start prepping the model itself ==
    if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
        logger.info("Getting model ready...")
        # here we can disable gradient checkpoint, by default = true,  use_gradient_checkpointing=True
        prepare_model_for_kbit_training(shared.model)

    # base model is now frozen and should not be reused for any other LoRA training than this one
    shared.model_dirty_from_training = True
    print(f"Transformers Model Type: {YELLOW}{model_type}{RESET}")

    if training_projection==train_choices[0]:
        model_to_lora_modules[model_id] = ["gate_proj","down_proj","up_proj","q_proj","k_proj","v_proj","o_proj"]
    elif training_projection==train_choices[1]:
        model_to_lora_modules[model_id] = ["q_proj","k_proj", "v_proj", "o_proj"]
    elif training_projection==train_choices[2]:
        model_to_lora_modules[model_id] = ["q_proj","k_proj", "v_proj"]
    elif training_projection==train_choices[3]:
        model_to_lora_modules[model_id] = ["k_proj", "v_proj", "down_proj"]        
    else:
        model_to_lora_modules[model_id] = ["q_proj", "v_proj"]


    logger.info("Preparing for training...")
    config = LoraConfig(
        r=lora_rank,
        lora_alpha=lora_alpha,
        target_modules=model_to_lora_modules[model_id],
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM"
    )

    # == Backup the existing adapter ==
    if not always_override:
        backup_adapter(lora_file_path)

    # == get model trainable params
    model_trainable_params, model_all_params = calc_trainable_parameters(shared.model)

    try:
        logger.info("Creating LoRA model...")
        lora_model = get_peft_model(shared.model, config)
        if not always_override and Path(f"{lora_file_path}/adapter_model.bin").is_file():
            logger.info("Loading existing LoRA data...")
            state_dict_peft = torch.load(f"{lora_file_path}/adapter_model.bin")
            set_peft_model_state_dict(lora_model, state_dict_peft)

            print(f" + Continue Training on {RED}{lora_file_path}/adapter_model.bin{RESET}")
            
            #load training_log.json if exist
           
            if Path(f"{lora_file_path}/training_log.json").is_file():
                with open(f"{lora_file_path}/training_log.json", 'r') as json_file:
                    json_ilog = json.load(json_file)
                    for key, value in json_ilog.items():
                        if key=='current_steps':
                            non_serialized_params.update({"checkpoint_offset": int(value+1)})
                            print(f" + Checkpoints will be saved with offset: {RED}{non_serialized_params['checkpoint_offset']}{RESET}")
                        if key=='epoch':
                            non_serialized_params.update({"epoch_offset": value})
                            print(f" + Epoch offset: {RED}{non_serialized_params['epoch_offset']}{RESET}")
           

            if Path(f"{lora_file_path}/training_graph.json").is_file():
                try:
                    with open(f"{lora_file_path}/training_graph.json", 'r') as json_file:
                        train_log_graph = json.load(json_file)
                        print(" + Training Graph loaded")   
                except:
                    print(f"Can't read training_graph")


    except:
        yield traceback.format_exc().replace('\n', '\n\n'), zero_pd
        return

    if shared.args.monkey_patch:
        from alpaca_lora_4bit.autograd_4bit import Autograd4bitQuantLinear
        from alpaca_lora_4bit.models import Linear4bitLt
        for _, m in lora_model.named_modules():
            if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
                if m.is_v1_model:
                    m.zeros = m.zeros.half()
                m.scales = m.scales.half()

    class Tracked():
        def __init__(self):
            self.current_steps = 0
            self.max_steps = 0
            self.did_save = False

    tracked = Tracked()
    actual_save_steps = math.ceil(save_steps / gradient_accumulation_steps)

    class Callbacks(transformers.TrainerCallback):
        def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
            tracked.current_steps = state.global_step * gradient_accumulation_steps
            tracked.max_steps = state.max_steps * gradient_accumulation_steps
            ssteps10 = int(max(2,(state.max_steps/epochs)*0.1))

            if WANT_INTERRUPT:
                control.should_epoch_stop = True
                control.should_training_stop = True
            else:
                current_loss = float(train_log.get('loss', 0.0))
                current_epoch_int = int(float(train_log.get('epoch', 0.0)))
              
                force_save = False

                current_steps_offset = tracked.current_steps + non_serialized_params['checkpoint_offset']

                folder_save = f"checkpoint-{current_steps_offset}"    

                # save if triggered by user
                if non_serialized_params['save_checkpoint_now']:
                    force_save = True
                    non_serialized_params.update({"save_checkpoint_now": False})
                    print(f"\033[1;31;1mSave Checkpoint manually trigerred.\033[0;37;0m")
                    folder_save = f"checkpoint-{current_steps_offset}-user"  

                patience = 3     # Set the number of consecutive steps for tracking stability
                
                if gradient_accumulation_steps==1:
                    patience = 4

                min_steps = ssteps10

                # Save each time the loss is below the threshold 
                if current_loss < non_serialized_params['save_steps_under_loss'] and current_loss > 0 and state.global_step > min_steps:
                    current_stability = non_serialized_params['current_stability']
                    current_stability += 1
                    non_serialized_params.update({"current_stability": current_stability}) 

                    if current_stability >= patience:
                        current_stability = 0
                        non_serialized_params.update({"current_stability": current_stability})     
                        current_loss_dec = round(current_loss, 2)
                        loss_str = f"{current_loss_dec:.2f}"
                        loss_str = loss_str.replace('.', '_')
                        new_save = (current_loss_dec-0.1) + 0.01
                        non_serialized_params.update({"save_steps_under_loss": new_save})

                        folder_save = f"checkpoint-{current_steps_offset}-loss-{loss_str}" 
                        force_save = True   

                   
                else:
                    # Reset stability if the loss goes above the threshold
                    non_serialized_params.update({"current_stability": 0})   

                # Save full epochs
                if actual_save_steps>0 and current_epoch_int > non_serialized_params['save_epochs'] and state.global_step > min_steps: 

                    
                    current_epoch_offset = current_epoch_int
                    
                    if non_serialized_params['epoch_offset'] > 0:
                        current_epoch_offset = current_epoch_int + round(non_serialized_params['epoch_offset'], 2)
                    
                    ep_off_str = f"{current_epoch_offset}"
                    ep_off_str = ep_off_str.replace('.', '_')
                    folder_save = f"checkpoint-{current_steps_offset}-epoch-{ep_off_str}" 

                    non_serialized_params.update({"save_epochs": current_epoch_int})
                    force_save = True

                # save each actual_save_steps
                if state.global_step > 0 and actual_save_steps > 0 and state.global_step % actual_save_steps == 0:
                    folder_save = f"checkpoint-{current_steps_offset}"  
                    force_save = True   

                if force_save:       
                    lora_model.save_pretrained(f"{lora_file_path}/{folder_save}/", safe_serialization = non_serialized_params['safe_serialization'])
                    print(f"\033[1;30;40mStep: {tracked.current_steps:6} \033[0;37;0m Saved: [{folder_save}]")
                    # Save log
                    with open(f"{lora_file_path}/{folder_save}/training_log.json", 'w', encoding='utf-8') as file:
                        json.dump(train_log, file, indent=2)
                    # == Save training prompt ==
                    with open(f"{lora_file_path}/{folder_save}/training_prompt.json", 'w', encoding='utf-8') as file:
                        json.dump(train_template, file, indent=2)
                

        def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
            tracked.current_steps += 1
            if WANT_INTERRUPT:
                control.should_epoch_stop = True
                control.should_training_stop = True

        def on_log(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, logs, **kwargs):
            train_log.update(logs)

            current_steps_offset = tracked.current_steps + non_serialized_params['checkpoint_offset']
            current_epoch_offset = train_log.get('epoch', 0.0) + non_serialized_params['epoch_offset']

            train_log.update({"current_steps": tracked.current_steps})
            train_log.update({"current_steps_adjusted": current_steps_offset})
            train_log.update({"epoch_adjusted": current_epoch_offset})

            if WANT_INTERRUPT:
                print("\033[1;31;1mInterrupted by user\033[0;37;0m")

            if non_serialized_params['checkpoint_offset']>0:
                print(f"\033[1;30;40mStep: {tracked.current_steps:6} [+{non_serialized_params['checkpoint_offset']}] \033[0;37;0m", end='')
            else:
                print(f"\033[1;30;40mStep: {tracked.current_steps:6} \033[0;37;0m", end='')
            
            graphentry = {
                'current_steps': int(train_log.get('current_steps_adjusted',0)),
                'loss': float(train_log.get('loss', 0.0)),
                'learning_rate': float(train_log.get('learning_rate', 0.0)),
                'epoch': float(train_log.get('epoch_adjusted', 0.0))
            }

            cur_loss = float(train_log.get('loss', 0.0))
            cur_lr = float(train_log.get('learning_rate', 0.0))
            cur_epoch = float(train_log.get('epoch', 0.0))
            
            if len(statistics['loss']) == 1:
                first_epoch = statistics['loss'][0]['epoch']
                first_value = statistics['loss'][0]['value']
                if first_value ==0:
                     statistics['loss'] = []


            statistics['loss'].append({'epoch': cur_epoch, 'value': cur_loss})
            statistics['lr'].append({'epoch': cur_epoch, 'value': cur_lr})

            # Add the entry to the continuous log
            train_log_graph.append(graphentry)

            # Save the graph log for now, we can later generate full graph
            with open(f"{lora_file_path}/training_graph.json", 'w') as file:
                json.dump(train_log_graph, file, indent=4)

            if 'loss' in logs:
                loss = float(logs['loss'])
                if loss <= stop_at_loss:
                    control.should_epoch_stop = True
                    control.should_training_stop = True
                    print(f"{RED}Stop Loss {stop_at_loss} reached.{RESET}")

    # FPHAM SAMPLE REQ Transformers error handling
    gradient_accumulation_max = int(train_data.num_rows)//micro_batch_size
    
    if gradient_accumulation_max < gradient_accumulation_steps:
        print(f"{RED}WARNING:{RESET} Current gradient accumulation is {RED}too high{RESET} for the amount of training data.")
        print(f"Gradient accumulation: {gradient_accumulation_steps} should be less than: {gradient_accumulation_max}. {RED}This could crash Accelerate/Transformers{RESET}")
        #min_batchSize = sample_req*micro_batch_size
        print(f"Preferable fix: {RED}Increase the size of dataset{RESET}")
        print(f"... or Decrerase Gradient Accumulation {RED}{gradient_accumulation_steps}{RESET} to below {GREEN}{gradient_accumulation_max}{RESET}")
        gradient_accumulation_steps = max(1,gradient_accumulation_max-1)
        print(f"Last resort fix for this run: Lowering Gradient accumulation to {GREEN}{gradient_accumulation_steps}{RESET} [Good luck]")

    else:
        print(f"Data Size Check: Gradient accumulation: {YELLOW}{gradient_accumulation_steps}{RESET} <= Blocks/Batch {gradient_accumulation_max} ... {GREEN}[OK]{RESET}")

    #END OF FPHAM SAMPLE REQ

    # FPHAM Custom Scheduler ==
    custom_scheduller = False
    lr_scheduler_type_arg = lr_scheduler_type

    if lr_scheduler_type == 'FP_low_epoch_annealing':
        custom_scheduller = True
        lr_scheduler_type_arg = 'cosine'
    elif lr_scheduler_type == 'FP_half_time_annealing':
        custom_scheduller = True
        lr_scheduler_type_arg = 'constant'
    elif lr_scheduler_type =='FP_raise_fall_creative':
        custom_scheduller = True
        lr_scheduler_type_arg = 'constant_with_warmup'
    
    #gradient_checkpointing=True
    
    args=transformers.TrainingArguments(
            report_to=report_to if report_to != "None" else None,
            per_device_train_batch_size=micro_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=math.ceil(warmup_steps / gradient_accumulation_steps),
            warmup_ratio = warmup_ratio,
            num_train_epochs=epochs,
            learning_rate=actual_lr,
            fp16=False if shared.args.cpu else True,
            optim=optimizer,
            logging_steps=1,
            evaluation_strategy="steps" if eval_data is not None else "no",
            eval_steps=math.ceil(eval_steps / gradient_accumulation_steps) if eval_data is not None else None,
            save_strategy="steps" if eval_data is not None else "no",
            output_dir=lora_file_path,
            lr_scheduler_type=lr_scheduler_type_arg,
            load_best_model_at_end=eval_data is not None,
            # TODO: Enable multi-device support
            ddp_find_unused_parameters=None,
            no_cuda=shared.args.cpu,
        )

    if custom_scheduller:
        trainer = FPSchedulerTrainer(
            neftune_noise_alpha=neft_noise_alpha,
            model=lora_model,
            train_dataset=train_data,
            eval_dataset=eval_data,
            args=args,
            data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
            callbacks=list([Callbacks()])
        )
    elif neft_noise_alpha > 0:
            trainer = FPNEFtuneTrainer(
            neftune_noise_alpha=neft_noise_alpha,
            model=lora_model,
            train_dataset=train_data,
            eval_dataset=eval_data,
            args=args,
            data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
            callbacks=list([Callbacks()])
        )
    else:
        trainer = transformers.Trainer(
            model=lora_model,
            train_dataset=train_data,
            eval_dataset=eval_data,
            args=args,
            data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
            callbacks=list([Callbacks()])
        )
    
    # END OF FPHAM CUSTOM SCHEDULER

    lora_model.config.use_cache = False

    if torch.__version__ >= "2" and sys.platform != "win32":
        lora_model = torch.compile(lora_model)

    # == Save parameters for reuse ==
    with open(f"{lora_file_path}/training_parameters.json", 'w', encoding='utf-8') as file:
        vars = locals()
        json.dump({x: vars[x] for x in PARAMETERS}, file, indent=2)

    # == Save training prompt ==
    with open(f"{lora_file_path}/training_prompt.json", 'w', encoding='utf-8') as file:
        json.dump(train_template, file, indent=2)

    # == Main run and monitor loop ==
    logger.info("Starting training...")
    yield "Starting...", zero_pd

    lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)

    projections_string = ", ".join([projection.replace("_proj", "") for projection in model_to_lora_modules[model_id]])

    print(f"Training '{model_id}' model using {YELLOW}({projections_string}){RESET} projections")

    if lora_all_param > 0:
        print(f"Trainable params: {lora_trainable_param:,d} ({RED}{100 * lora_trainable_param / lora_all_param:.4f} %{RESET}), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")

    train_log.update({"base_model_name": shared.model_name})
    train_log.update({"base_model_class": shared.model.__class__.__name__})
    train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)})
    train_log.update({"base_loaded_in_8bit": getattr(lora_model, "is_loaded_in_8bit", False)})
    train_log.update({"projections": projections_string})
    if non_serialized_params['checkpoint_offset'] > 0:
        train_log.update({"last_run_steps_offset": non_serialized_params['checkpoint_offset']})
        train_log.update({"last_run_epoch_offset": non_serialized_params['epoch_offset']})


    if non_serialized_params['checkpoint_offset'] > 0:
        print(f"Continue training on {RED}previous adapter{RESET} from epoch: {RED}{non_serialized_params['epoch_offset']}{RESET}")

    if stop_at_loss > 0:
        print(f"Monitoring loss {RED}(Auto-Stop at: {stop_at_loss}){RESET}")

    

    if WANT_INTERRUPT:
        yield "Interrupted before start.", zero_pd
        return

    def log_train_dataset(trainer):
        decoded_entries = []
        # Try to decode the entries and write the log file
        try:
            # Iterate over the first 10 elements in the dataset (or fewer if there are less than 10)
            for i in range(min(10, len(trainer.train_dataset))):
                decoded_text = shared.tokenizer.decode(trainer.train_dataset[i]['input_ids'])
                decoded_entries.append({"value": decoded_text})

            # Write the log file
            Path('logs').mkdir(exist_ok=True)
            with open(Path('logs/train_dataset_sample.json'), 'w') as json_file:
                json.dump(decoded_entries, json_file, indent=4)

            logger.info("Log file 'train_dataset_sample.json' created in the 'logs' directory.")
        except Exception as e:
            logger.error(f"Failed to create log file due to error: {e}")

    def threaded_run():
        log_train_dataset(trainer)
        trainer.train()
        # Note: save in the thread in case the gradio thread breaks (eg browser closed)
        lora_model.save_pretrained(lora_file_path, safe_serialization = non_serialized_params['safe_serialization'])
        logger.info("LoRA training run is completed and saved.")
        # Save log
        with open(f"{lora_file_path}/training_log.json", 'w', encoding='utf-8') as file:
            json.dump(train_log, file, indent=2)

    thread = threading.Thread(target=threaded_run)
    thread.start()
    last_step = 0
    start_time = time.perf_counter()

    while thread.is_alive():
        time.sleep(0.5)

        if statistics['loss']:
            max_value_dict = max(statistics['loss'], key=lambda x: x['value'])
            max_value = max_value_dict['value']+0.4
            first_epoch = statistics['loss'][0]['epoch']
            last_epoch = statistics['loss'][-1]['epoch']
        else:
            max_value = 3.5
            last_epoch = 0
            first_epoch = 0           

        if WANT_INTERRUPT:

            losses = gr.LinePlot.update(
				value = pd.DataFrame(statistics['loss']),
                x="epoch", y="value",
                title="Loss Metrics",
                overlay_point=True, tooltip=["epoch", "value"],
				x_lim=[first_epoch,last_epoch], y_lim=[0,max_value],
                width=500, height=250 )

            yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*", losses

        elif tracked.current_steps != last_step:
            last_step = tracked.current_steps
            time_elapsed = time.perf_counter() - start_time
            lastloss = float(train_log.get('loss', 0.0))

            non_serialized_params.update({"training_loop": True})               

            if lastloss > 0:
                lastloss_str = f", ... Current Loss: `{lastloss:.2f}`"
            else:
                lastloss_str = ""

            if time_elapsed <= 0:
                timer_info = ""
                total_time_estimate = 999
            else:
                its = tracked.current_steps / time_elapsed
                if its > 1:
                    timer_info = f"`{its:.2f}` it/s"
                else:
                    timer_info = f"`{1.0/its:.2f}` s/it"

                total_time_estimate = (1.0 / its) * (tracked.max_steps)

            if stop_at_loss != non_serialized_params['stop_at_loss']:
                stop_at_loss = non_serialized_params['stop_at_loss']
                print(f"Stop at loss changed {RED}(Auto-Stop at: {stop_at_loss}){RESET}")
            
            losses = gr.LinePlot.update(
				value = pd.DataFrame(statistics['loss']),
                x="epoch", y="value",
                title="Loss Metrics",
                overlay_point=True, tooltip=["epoch", "value"],
				x_lim=[first_epoch,last_epoch], y_lim=[0,max_value],
                width=500, height=250 )
				

            yield f"Running... **{tracked.current_steps}** / **{tracked.max_steps}** ... {timer_info}, {format_time(time_elapsed)} / {format_time(total_time_estimate)} ... {format_time(total_time_estimate - time_elapsed)} remaining {lastloss_str}", losses

    # Saving in the train thread might fail if an error occurs, so save here if so.

    #return_pd = pd.DataFrame(statistics['loss'])

    if statistics['loss']:
        max_value_dict = max(statistics['loss'], key=lambda x: x['value'])
        max_value = max_value_dict['value']+0.4
        first_epoch = statistics['loss'][0]['epoch']
        last_epoch = statistics['loss'][-1]['epoch']
    else:
        max_value = 3.5
        last_epoch = 0
        first_epoch = 0 

    return_pd = gr.LinePlot.update(
        value = pd.DataFrame(statistics['loss']),
        x="epoch", y="value",
        title="Loss Metrics",
        overlay_point=True, tooltip=["epoch", "value"],
        x_lim=[first_epoch,last_epoch], y_lim=[0,max_value],
        width=500, height=250)

    non_serialized_params.update({"training_loop": False})

    if not tracked.did_save:
        logger.info("Training complete, saving...")
        lora_model.save_pretrained(lora_file_path, safe_serialization = non_serialized_params['safe_serialization'])

    if WANT_INTERRUPT:
        logger.info("Training interrupted.")
        yield f"Interrupted by user. LoRA saved to `{lora_file_path}`.", return_pd
    else:
        logger.info("Training complete!")
        yield f"Done! LoRA saved to `{lora_file_path}`.\n\nBefore testing your new LoRA, make sure to first reload the model, as it is currently dirty from training.", return_pd

    create_graph(lora_file_path, lora_name)

def format_time(seconds: float):
    if seconds < 120:
        return f"`{seconds:.0f}` seconds"

    minutes = seconds / 60
    if minutes < 120:
        return f"`{minutes:.0f}` minutes"

    hours = minutes / 60
    return f"`{hours:.0f}` hours"