from fastai.vision.all import * import gradio as gr learn = load_learner('carmodel.pkl') def predict(img): labels = learn.dls.vocab img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Car Cat Dog Classifier" description = "A classifier trained on the Oxford Pets and Stanford Cars dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." gr.Interface(fn=predict, inputs="image", outputs="label",title=title,description=description).launch(share=True)