from diffusers import DiffusionPipeline import gradio as gr import torch import math import PIL if torch.cuda.is_available(): device = "cuda" dtype = torch.float16 else: device = "cpu" dtype = torch.bfloat16 pipe = DiffusionPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=dtype, custom_pipeline='unclip_image_interpolation') pipe.to(device) def unclip_image_interpolation( start_image, end_image, steps, seed ): generator = torch.Generator() generator.manual_seed(seed) images = [start_image, end_image] output = pipe(image=images, steps=steps, generator=generator) return output.images inputs = [ gr.Image(type="pil"), gr.Image(type="pil"), gr.Slider(minimum=2, maximum=12, default=5, step=1, label="Steps"), gr.Number(0, label="Seed", precision=0) ] output = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") examples = [ ["starry_night.jpg","dogs.jpg", 5, 20], ["flowers.jpg", "dogs.jpg", 5, 42], ["starry_night.jpg","flowers.jpg", 6, 9011] ] title = "UnClip Image Interpolation Pipeline" demo_app = gr.Interface( fn=unclip_image_interpolation, inputs=inputs, outputs=output, title=title, theme='huggingface', examples=examples, cache_examples=True ) demo_app.launch(debug=True, enable_queue=True)