from keras.preprocessing.text import Tokenizer from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential, load_model from sklearn.model_selection import train_test_split from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline from arabert.preprocess import ArabertPreprocessor from huggingface_hub import from_pretrained_keras from collections import Counter from transformers import AutoTokenizer, AutoModelForCausalLM import Cleaning import threading import pandas as pd # Model summury model_name="abdalrahmanshahrour/auto-arabic-summarization" preprocessor = ArabertPreprocessor(model_name="") tokenizer = AutoTokenizer.from_pretrained(model_name) modelsummary =AutoModelForSeq2SeqLM.from_pretrained(model_name) pipeline1 = pipeline("text2text-generation",model=modelsummary,tokenizer=tokenizer) model_sentiment = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-76jP') #summary model def modelsummary(data): result = pipeline1(data, pad_token_id= tokenizer.eos_token_id, num_beams=4, repetition_penalty=3.0, max_length=600, length_penalty=.50, no_repeat_ngram_size = 3)[0]['generated_text'] result = remove_punctuations(result) return { 'summary':result} # def modelpredict(data): # map = {0:'anger', 1:'sadness', 2:'joy', 3:'surprise', 4:'love', 5:'sympathy', 6:'fear'} # text = txt_preprocess(data) # pred=model.predict(pd.Series([data])) # return {"emotion":map[np.argmax(pred,axis=-1)[0]]} #Sentiment model def modelpredict(data): map = {0:'anger', 1:'sadness', 2:'joy', 3:'surprise', 4:'love', 5:'sympathy', 6:'fear'} data = Cleaning.txt_preprocess(data) pred = model_sentiment.predict(pd.Series([data])) return {"label":map[np.argmax(pred,axis=-1)[0]]} # return {'anger': float(pred[0][0]), 'sadness': float(pred[0][1]), 'joy': float(pred[0][2]), 'surprise': float(pred[0][3]), # 'love': float(pred[0][4]), 'sympathy': float(pred[0][5]), 'fear': float(pred[0][6])}