Housing_Crisis_Final_Project / streamlit_app.py
yahyadoe's picture
:boom:
987e807 verified
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
import codecs
from PIL import Image
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from streamlit_option_menu import option_menu
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import confusion_matrix, classification_report
st.set_page_config(page_title='Housing Crisis App')
df = pd.read_csv("housing.csv")
selected = option_menu(
menu_title=None,
options=["Introduction", "Exploration", "Visualization", "Prediction", "MLFlow", "Explainable AI", "Conclusion"],
icons=["house", "search","bar-chart-line", "lightbulb", "cloud", "robot", "check-circle"],
default_index=0,
orientation="horizontal",
)
if selected == 'Introduction':
st.title("Housing Crisis 🏠")
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
image_path = Image.open("housing_image.jpg")
st.image(image_path, width=400)
st.write("""
## Introduction
Housing affordability and availability are pressing issues in California, impacting millions of residents and the state's economy. This app explores California housing price data to uncover trends, correlations, and potential solutions for combating the housing crisis.
## Objective
This app aims to:
- Explore factors influencing housing prices.
- Analyze trends in affordability and availability.
- Provide actionable insights and potential solutions to address the housing crisis.
## Key Features
- Visualization of housing price trends and influential factors.
- Analysis of correlations between demographics, geography, and housing costs.
- Predictive modeling for housing prices.
""")
elif selected == 'Exploration':
st.title("Data Exploration πŸ”")
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Dataset Head", "Dataset Tail", "Description", "Missing Values", "Generate Report"])
with tab1:
st.subheader("Head of the Dataset")
st.dataframe(df.head())
with tab2:
st.subheader("Tail of the Dataset")
st.dataframe(df.tail())
with tab3:
st.subheader("Description of the Dataset")
st.dataframe(df.describe())
with tab4:
df['total_bedrooms'].fillna(df['total_bedrooms'].median(), inplace=True)
st.subheader("Missing values")
dfnull = df.isnull()/len(df)*100
total_missing = dfnull.sum().round(2)
st.write(total_missing)
if total_missing[0] == 0.0:
st.success("Congrats, there are no missing values!")
else:
st.error("There are missing values.")
with tab5:
if st.button("Generate Report"):
def read_html_report(file_path):
with codecs.open(file_path, 'r', encoding="utf-8") as f:
return f.read()
html_report = read_html_report('housing_report.html')
st.title("Streamlit Quality Report")
st.components.v1.html(html_report, height=1000, scrolling=True)
elif selected == 'Visualization':
st.title("Data Visualization πŸ“Š")
tab1, tab2, tab3, tab4 = st.tabs(["Price Distribution", "Geographic Heatmap", "Correlation Heatmap", "Feature Relationships"])
with tab1:
st.subheader("Price Distribution")
fig, ax = plt.subplots(figsize=(10, 6))
sns.histplot(df['median_house_value'], bins=50, kde=True, ax=ax)
ax.set_title("Distribution of Housing Prices")
st.pyplot(fig)
with tab2:
st.subheader("Geographic Heatmap of House Values")
cubehelix_cmap = sns.cubehelix_palette(start=2, rot=0, dark=0, light=0.95, reverse=True, as_cmap=True)
min_value = df['median_house_value'].min()
max_value = df['median_house_value'].max()
df['normalized_value'] = (df['median_house_value'] - min_value) / (max_value - min_value)
def get_rgb_color(value):
rgba = cubehelix_cmap(value)
return [int(c * 255) for c in rgba[:3]]
df['color'] = df['normalized_value'].apply(get_rgb_color)
df['size'] = df['normalized_value'] * 100
layer = pdk.Layer(
"ScatterplotLayer",
data=df,
get_position=["longitude", "latitude"],
get_fill_color="color",
get_radius="size",
radius_scale=10,
pickable=True,
)
view_state = pdk.ViewState(
latitude=df['latitude'].mean(),
longitude=df['longitude'].mean(),
zoom=6,
pitch=0,
)
map = pdk.Deck(
layers=[layer],
initial_view_state=view_state,
tooltip={"text": "Price: {median_house_value}"},
)
st.pydeck_chart(map)
with tab3:
st.subheader("Correlation Heatmap")
numerical_columns = df.select_dtypes(include=[np.number]).columns
corr_matrix = df[numerical_columns].corr()
fig, ax = plt.subplots(figsize=(12, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5, ax=ax)
ax.set_title("Correlation Matrix")
st.pyplot(fig)
with tab4:
st.subheader("Relationships Between Features")
x_feature = st.selectbox("Select X-axis Feature:", df.columns)
y_feature = st.selectbox("Select Y-axis Feature:", df.columns)
fig, ax = plt.subplots(figsize=(10, 6))
sns.scatterplot(data=df, x=x_feature, y=y_feature, ax=ax)
ax.set_title(f"Relationship Between {x_feature} and {y_feature}")
st.pyplot(fig)
elif selected == "Prediction":
df.fillna(-1, inplace=True)
st.title("Predicting Housing Prices and Categories πŸ’‘")
tab1, tab2 = st.tabs(["Linear Regression", "Decision Tree"])
df = df.drop('ocean_proximity', axis=1)
with tab1:
numeric_columns = df.select_dtypes(include=[np.number]).columns
features = st.multiselect("Select Features for Prediction", numeric_columns)
target = st.selectbox("Select Target Variable", ["median_house_value"])
if features:
X = df[features]
y = df[target]
test_size = st.slider("Test Size (%)", 10, 50, 20) / 100
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
mae = metrics.mean_absolute_error(y_test, predictions)
mae = mae / 100000
r2 = metrics.r2_score(y_test, predictions)
st.write("### Prediction Results")
st.write(f"Mean Absolute Error (MAE): {mae:.2f}")
st.write(f"RΒ² Score: {r2:.2f}")
with tab2:
st.title("Decision Tree 🌳")
numeric_columns = df.select_dtypes(include=[np.number]).columns
features = st.multiselect("Select Features for Prediction", numeric_columns, key="dt_features")
target = st.selectbox("Select Target Variable", ["median_house_value"], key="dt_target")
if features:
X = df[features]
y = df[target].values.ravel()
test_size = st.slider("Test Size (%)", 10, 50, 20, key="dt_test_size") / 100
max_depth = st.slider("Max Depth of Tree", 1, 20, 5, key="dt_max_depth")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
model = DecisionTreeRegressor(max_depth=max_depth)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
mae = metrics.mean_absolute_error(y_test, predictions)
mae = mae/100000
r2 = metrics.r2_score(y_test, predictions)
st.write("### Prediction Results")
st.write(f"Mean Absolute Error (MAE): {mae:.2f}")
st.write(f"RΒ² Score: {r2:.2f}")
elif selected == "MLFlow":
st.title("MLFlow Integration 🌩️")
st.write("""
## Model Tracking with MLFlow
This app integrates MLFlow through DagHub to track the following:
- Experiment runs and parameters.
- Performance metrics (MAE, RΒ² Score).
- Model artifacts for reproducibility.
""")
import dagshub
import mlflow
import streamlit_shadcn_ui as ui
ui.link_button(text="πŸ‘‰ Go to ML Flow",url="https://dagshub.com/sufyanw/FinalProject.mlflow/#/experiments/0?searchFilter=&orderByKey=attributes.start_time&orderByAsc=false&startTime=ALL&lifecycleFilter=Active&modelVersionFilter=All+Runs&datasetsFilter=W10%3D",key="link_btnmlflow")
elif selected == "Explainable AI":
st.title("Explainable AI πŸ”ŽπŸ€–")
st.write("""
This section uses **Shapash**, an explainability library, to provide insights into the predictions made by the housing price prediction model.
""")
from shapash.explainer.smart_explainer import SmartExplainer
df.fillna(-1, inplace=True)
numeric_columns = df.select_dtypes(include=[np.number]).columns
features = st.multiselect("Select Features for Explainability", numeric_columns, key="xai_features")
target = st.selectbox("Select Target Variable", ["median_house_value"], key="xai_target")
if features:
X = df[features]
y = df[target]
test_size = st.slider("Test Size (%)", 10, 50, 20, key="xai_test_size") / 100
random_state = st.number_input("Random State (optional)", value=0, min_value=0, key="xai_random_state")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
model = DecisionTreeRegressor(random_state=random_state)
model.fit(X_train, y_train)
explainer = SmartExplainer(model=model)
y_pred = model.predict(X_test)
y_pred_series = pd.Series(y_pred, index=X_test.index, name="Predictions")
explainer.compile(x=X_test, y_pred = y_pred_series)
st.write("### Global Explainability")
importance_plot = explainer.plot.features_importance()
st.plotly_chart(importance_plot, use_container_width=True)
st.write("### Local Explainability")
selected_index = st.slider("Select an Index for Explanation", 0, len(X_test) - 1, 0)
local_explainability = explainer.plot.local_plot(index=selected_index)
st.plotly_chart(local_explainability, use_container_width=True)
elif selected == 'Conclusion':
st.title("Conclusion 🏁")
st.write("""
### Key Insights:
1. **Housing Affordability**: Rising housing costs in California are closely linked to population density and proximity to urban centers.
2. **Influential Factors**: Features like household income, location, and proximity to amenities significantly impact housing prices.
### Proposed Solutions:
1. **Affordable Housing Initiatives**: Increase funding for affordable housing projects and incentivize developers.
2. **Zoning Reforms**: Encourage high-density housing developments through zoning changes.
3. **Public Transportation Investments**: Improve transportation infrastructure to connect remote areas with urban job markets.
""")