Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Placeholders for non-task-specific model inputs.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
class Inputs(object): | |
def __init__(self, config): | |
self._config = config | |
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') | |
self.label_smoothing = tf.placeholder(tf.float32, name='label_smoothing') | |
self.lengths = tf.placeholder(tf.int32, shape=[None], name='lengths') | |
self.mask = tf.placeholder(tf.float32, [None, None], name='mask') | |
self.words = tf.placeholder(tf.int32, shape=[None, None], name='words') | |
self.chars = tf.placeholder(tf.int32, shape=[None, None, None], | |
name='chars') | |
def create_feed_dict(self, mb, is_training): | |
cvt = mb.task_name == 'unlabeled' | |
return { | |
self.keep_prob: 1.0 if not is_training else | |
(self._config.unlabeled_keep_prob if cvt else | |
self._config.labeled_keep_prob), | |
self.label_smoothing: self._config.label_smoothing | |
if (is_training and not cvt) else 0.0, | |
self.lengths: mb.lengths, | |
self.words: mb.words, | |
self.chars: mb.chars, | |
self.mask: mb.mask.astype('float32') | |
} | |