Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Executes Keras benchmarks and accuracy tests.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import time | |
from absl import flags | |
import tensorflow as tf # pylint: disable=g-bad-import-order | |
from official.benchmark import keras_benchmark | |
from official.benchmark import benchmark_wrappers | |
from official.benchmark.models import resnet_cifar_main | |
MIN_TOP_1_ACCURACY = 0.929 | |
MAX_TOP_1_ACCURACY = 0.938 | |
FLAGS = flags.FLAGS | |
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin' | |
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark): | |
"""Accuracy tests for ResNet56 Keras CIFAR-10.""" | |
def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
"""A benchmark class. | |
Args: | |
output_dir: directory where to output e.g. log files | |
root_data_dir: directory under which to look for dataset | |
**kwargs: arbitrary named arguments. This is needed to make the | |
constructor forward compatible in case PerfZero provides more | |
named arguments before updating the constructor. | |
""" | |
self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME) | |
flag_methods = [resnet_cifar_main.define_cifar_flags] | |
super(Resnet56KerasAccuracy, self).__init__( | |
output_dir=output_dir, flag_methods=flag_methods) | |
def _setup(self): | |
super(Resnet56KerasAccuracy, self)._setup() | |
FLAGS.use_tensor_lr = False | |
def benchmark_graph_1_gpu(self): | |
"""Test keras based model with Keras fit and distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu') | |
FLAGS.dtype = 'fp32' | |
self._run_and_report_benchmark() | |
def benchmark_1_gpu(self): | |
"""Test keras based model with eager and distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
self._run_and_report_benchmark() | |
def benchmark_cpu(self): | |
"""Test keras based model on CPU.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_cpu') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_cpu_no_dist_strat(self): | |
"""Test keras based model on CPU without distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_cpu_no_dist_strat_run_eagerly(self): | |
"""Test keras based model on CPU w/forced eager and no dist_strat.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_cpu_no_dist_strat_run_eagerly') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
FLAGS.run_eagerly = True | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_1_gpu_no_dist_strat(self): | |
"""Test keras based model with eager and no dist strat.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
FLAGS.distribution_strategy = 'off' | |
self._run_and_report_benchmark() | |
def benchmark_1_gpu_no_dist_strat_run_eagerly(self): | |
"""Test keras based model w/forced eager and no dist_strat.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_1_gpu_no_dist_strat_run_eagerly') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
FLAGS.run_eagerly = True | |
FLAGS.distribution_strategy = 'off' | |
self._run_and_report_benchmark() | |
def benchmark_graph_1_gpu_no_dist_strat(self): | |
"""Test keras based model with Keras fit but not distribution strategies.""" | |
self._setup() | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.num_gpus = 1 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat') | |
FLAGS.dtype = 'fp32' | |
self._run_and_report_benchmark() | |
def benchmark_2_gpu(self): | |
"""Test keras based model with eager and distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 2 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
self._run_and_report_benchmark() | |
def benchmark_graph_2_gpu(self): | |
"""Test keras based model with Keras fit and distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 2 | |
FLAGS.data_dir = self.data_dir | |
FLAGS.batch_size = 128 | |
FLAGS.train_epochs = 182 | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu') | |
FLAGS.dtype = 'fp32' | |
self._run_and_report_benchmark() | |
def _run_and_report_benchmark(self): | |
start_time_sec = time.time() | |
stats = resnet_cifar_main.run(FLAGS) | |
wall_time_sec = time.time() - start_time_sec | |
super(Resnet56KerasAccuracy, self)._report_benchmark( | |
stats, | |
wall_time_sec, | |
top_1_min=MIN_TOP_1_ACCURACY, | |
top_1_max=MAX_TOP_1_ACCURACY, | |
total_batch_size=FLAGS.batch_size, | |
log_steps=100) | |
class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark): | |
"""Short performance tests for ResNet56 via Keras and CIFAR-10.""" | |
def __init__(self, output_dir=None, default_flags=None): | |
flag_methods = [resnet_cifar_main.define_cifar_flags] | |
super(Resnet56KerasBenchmarkBase, self).__init__( | |
output_dir=output_dir, | |
flag_methods=flag_methods, | |
default_flags=default_flags) | |
def _run_and_report_benchmark(self): | |
start_time_sec = time.time() | |
stats = resnet_cifar_main.run(FLAGS) | |
wall_time_sec = time.time() - start_time_sec | |
super(Resnet56KerasBenchmarkBase, self)._report_benchmark( | |
stats, | |
wall_time_sec, | |
total_batch_size=FLAGS.batch_size, | |
log_steps=FLAGS.log_steps) | |
def benchmark_1_gpu(self): | |
"""Test 1 gpu.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.enable_eager = True | |
FLAGS.distribution_strategy = 'one_device' | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') | |
FLAGS.batch_size = 128 | |
self._run_and_report_benchmark() | |
def benchmark_1_gpu_xla(self): | |
"""Test 1 gpu with xla enabled.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.enable_eager = True | |
FLAGS.run_eagerly = False | |
FLAGS.enable_xla = True | |
FLAGS.distribution_strategy = 'one_device' | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla') | |
FLAGS.batch_size = 128 | |
self._run_and_report_benchmark() | |
def benchmark_graph_1_gpu(self): | |
"""Test 1 gpu graph.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.enable_eager = False | |
FLAGS.run_eagerly = False | |
FLAGS.distribution_strategy = 'one_device' | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu') | |
FLAGS.batch_size = 128 | |
self._run_and_report_benchmark() | |
def benchmark_1_gpu_no_dist_strat(self): | |
"""Test 1 gpu without distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.enable_eager = True | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat') | |
FLAGS.batch_size = 128 | |
self._run_and_report_benchmark() | |
def benchmark_graph_1_gpu_no_dist_strat(self): | |
"""Test 1 gpu graph mode without distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.enable_eager = False | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat') | |
FLAGS.batch_size = 128 | |
self._run_and_report_benchmark() | |
def benchmark_1_gpu_no_dist_strat_run_eagerly(self): | |
"""Test 1 gpu without distribution strategy and forced eager.""" | |
self._setup() | |
FLAGS.num_gpus = 1 | |
FLAGS.batch_size = 128 | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_1_gpu_no_dist_strat_run_eagerly') | |
FLAGS.dtype = 'fp32' | |
FLAGS.enable_eager = True | |
FLAGS.run_eagerly = True | |
FLAGS.distribution_strategy = 'off' | |
self._run_and_report_benchmark() | |
def benchmark_2_gpu(self): | |
"""Test 2 gpu.""" | |
self._setup() | |
FLAGS.num_gpus = 2 | |
FLAGS.enable_eager = True | |
FLAGS.run_eagerly = False | |
FLAGS.distribution_strategy = 'mirrored' | |
FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu') | |
FLAGS.batch_size = 128 * 2 # 2 GPUs | |
self._run_and_report_benchmark() | |
def benchmark_graph_2_gpu(self): | |
"""Test 2 gpu graph mode.""" | |
self._setup() | |
FLAGS.num_gpus = 2 | |
FLAGS.enable_eager = False | |
FLAGS.run_eagerly = False | |
FLAGS.distribution_strategy = 'mirrored' | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu') | |
FLAGS.batch_size = 128 * 2 # 2 GPUs | |
self._run_and_report_benchmark() | |
def benchmark_cpu(self): | |
"""Test cpu.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.enable_eager = True | |
FLAGS.model_dir = self._get_model_dir('benchmark_cpu') | |
FLAGS.batch_size = 128 | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_graph_cpu(self): | |
"""Test cpu graph mode.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.enable_eager = False | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu') | |
FLAGS.batch_size = 128 | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_cpu_no_dist_strat_run_eagerly(self): | |
"""Test cpu without distribution strategy and forced eager.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.enable_eager = True | |
FLAGS.run_eagerly = True | |
FLAGS.model_dir = self._get_model_dir( | |
'benchmark_cpu_no_dist_strat_run_eagerly') | |
FLAGS.batch_size = 128 | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_cpu_no_dist_strat(self): | |
"""Test cpu without distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.enable_eager = True | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat') | |
FLAGS.batch_size = 128 | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
def benchmark_graph_cpu_no_dist_strat(self): | |
"""Test cpu graph mode without distribution strategies.""" | |
self._setup() | |
FLAGS.num_gpus = 0 | |
FLAGS.enable_eager = False | |
FLAGS.distribution_strategy = 'off' | |
FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu_no_dist_strat') | |
FLAGS.batch_size = 128 | |
FLAGS.data_format = 'channels_last' | |
self._run_and_report_benchmark() | |
class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase): | |
"""Synthetic benchmarks for ResNet56 and Keras.""" | |
def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
default_flags = {} | |
default_flags['skip_eval'] = True | |
default_flags['use_synthetic_data'] = True | |
default_flags['train_steps'] = 110 | |
default_flags['log_steps'] = 10 | |
default_flags['use_tensor_lr'] = False | |
super(Resnet56KerasBenchmarkSynth, self).__init__( | |
output_dir=output_dir, default_flags=default_flags) | |
class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase): | |
"""Real data benchmarks for ResNet56 and Keras.""" | |
def __init__(self, output_dir=None, root_data_dir=None, **kwargs): | |
default_flags = {} | |
default_flags['skip_eval'] = True | |
default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME) | |
default_flags['train_steps'] = 110 | |
default_flags['log_steps'] = 10 | |
default_flags['use_tensor_lr'] = False | |
super(Resnet56KerasBenchmarkReal, self).__init__( | |
output_dir=output_dir, default_flags=default_flags) | |
if __name__ == '__main__': | |
tf.test.main() | |