Spaces:
Running
Running
File size: 15,634 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
"""Memory module for storing "nearest neighbors".
Implements a key-value memory for generalized one-shot learning
as described in the paper
"Learning to Remember Rare Events"
by Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio,
published as a conference paper at ICLR 2017.
"""
import numpy as np
from six.moves import xrange
import tensorflow as tf
class Memory(object):
"""Memory module."""
def __init__(self, key_dim, memory_size, vocab_size,
choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
var_cache_device='', nn_device=''):
self.key_dim = key_dim
self.memory_size = memory_size
self.vocab_size = vocab_size
self.choose_k = min(choose_k, memory_size)
self.alpha = alpha
self.correct_in_top = correct_in_top
self.age_noise = age_noise
self.var_cache_device = var_cache_device # Variables are cached here.
self.nn_device = nn_device # Device to perform nearest neighbour matmul.
caching_device = var_cache_device if var_cache_device else None
self.update_memory = tf.constant(True) # Can be fed "false" if needed.
self.mem_keys = tf.get_variable(
'memkeys', [self.memory_size, self.key_dim], trainable=False,
initializer=tf.random_uniform_initializer(-0.0, 0.0),
caching_device=caching_device)
self.mem_vals = tf.get_variable(
'memvals', [self.memory_size], dtype=tf.int32, trainable=False,
initializer=tf.constant_initializer(0, tf.int32),
caching_device=caching_device)
self.mem_age = tf.get_variable(
'memage', [self.memory_size], dtype=tf.float32, trainable=False,
initializer=tf.constant_initializer(0.0), caching_device=caching_device)
self.recent_idx = tf.get_variable(
'recent_idx', [self.vocab_size], dtype=tf.int32, trainable=False,
initializer=tf.constant_initializer(0, tf.int32))
# variable for projecting query vector into memory key
self.query_proj = tf.get_variable(
'memory_query_proj', [self.key_dim, self.key_dim], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(0, 0.01),
caching_device=caching_device)
def get(self):
return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
def set(self, k, v, a, r=None):
return tf.group(
self.mem_keys.assign(k),
self.mem_vals.assign(v),
self.mem_age.assign(a),
(self.recent_idx.assign(r) if r is not None else tf.group()))
def clear(self):
return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
self.recent_idx])
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# look up in large memory, no gradients
with tf.device(self.nn_device):
similarities = tf.matmul(tf.stop_gradient(normalized_query),
self.mem_keys, transpose_b=True, name='nn_mmul')
_, hint_pool_idxs = tf.nn.top_k(
tf.stop_gradient(similarities), k=self.choose_k, name='nn_topk')
return hint_pool_idxs
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output):
"""Function that creates all the update ops."""
mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
dtype=tf.float32))
with tf.control_dependencies([mem_age_incr]):
mem_age_upd = tf.scatter_update(
self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))
mem_key_upd = tf.scatter_update(
self.mem_keys, upd_idxs, upd_keys)
mem_val_upd = tf.scatter_update(
self.mem_vals, upd_idxs, upd_vals)
if use_recent_idx:
recent_idx_upd = tf.scatter_update(
self.recent_idx, intended_output, upd_idxs)
else:
recent_idx_upd = tf.group()
return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd)
def query(self, query_vec, intended_output, use_recent_idx=True):
"""Queries memory for nearest neighbor.
Args:
query_vec: A batch of vectors to query (embedding of input to model).
intended_output: The values that would be the correct output of the
memory.
use_recent_idx: Whether to always insert at least one instance of a
correct memory fetch.
Returns:
A tuple (result, mask, teacher_loss).
result: The result of the memory look up.
mask: The affinity of the query to the result.
teacher_loss: The loss for training the memory module.
"""
batch_size = tf.shape(query_vec)[0]
output_given = intended_output is not None
# prepare query for memory lookup
query_vec = tf.matmul(query_vec, self.query_proj)
normalized_query = tf.nn.l2_normalize(query_vec, dim=1)
hint_pool_idxs = self.get_hint_pool_idxs(normalized_query)
if output_given and use_recent_idx: # add at least one correct memory
most_recent_hint_idx = tf.gather(self.recent_idx, intended_output)
hint_pool_idxs = tf.concat(
axis=1,
values=[hint_pool_idxs, tf.expand_dims(most_recent_hint_idx, 1)])
choose_k = tf.shape(hint_pool_idxs)[1]
with tf.device(self.var_cache_device):
# create small memory and look up with gradients
my_mem_keys = tf.stop_gradient(tf.gather(self.mem_keys, hint_pool_idxs,
name='my_mem_keys_gather'))
similarities = tf.matmul(tf.expand_dims(normalized_query, 1),
my_mem_keys, adjoint_b=True, name='batch_mmul')
hint_pool_sims = tf.squeeze(similarities, [1], name='hint_pool_sims')
hint_pool_mem_vals = tf.gather(self.mem_vals, hint_pool_idxs,
name='hint_pool_mem_vals')
# Calculate softmax mask on the top-k if requested.
# Softmax temperature. Say we have K elements at dist x and one at (x+a).
# Softmax of the last is e^tm(x+a)/Ke^tm*x + e^tm(x+a) = e^tm*a/K+e^tm*a.
# To make that 20% we'd need to have e^tm*a ~= 0.2K, so tm = log(0.2K)/a.
softmax_temp = max(1.0, np.log(0.2 * self.choose_k) / self.alpha)
mask = tf.nn.softmax(hint_pool_sims[:, :choose_k - 1] * softmax_temp)
# prepare returned values
nearest_neighbor = tf.to_int32(
tf.argmax(hint_pool_sims[:, :choose_k - 1], 1))
no_teacher_idxs = tf.gather(
tf.reshape(hint_pool_idxs, [-1]),
nearest_neighbor + choose_k * tf.range(batch_size))
with tf.device(self.var_cache_device):
result = tf.gather(self.mem_vals, tf.reshape(no_teacher_idxs, [-1]))
if not output_given:
teacher_loss = None
return result, mask, teacher_loss
# prepare hints from the teacher on hint pool
teacher_hints = tf.to_float(
tf.abs(tf.expand_dims(intended_output, 1) - hint_pool_mem_vals))
teacher_hints = 1.0 - tf.minimum(1.0, teacher_hints)
teacher_vals, teacher_hint_idxs = tf.nn.top_k(
hint_pool_sims * teacher_hints, k=1)
neg_teacher_vals, _ = tf.nn.top_k(
hint_pool_sims * (1 - teacher_hints), k=1)
# bring back idxs to full memory
teacher_idxs = tf.gather(
tf.reshape(hint_pool_idxs, [-1]),
teacher_hint_idxs[:, 0] + choose_k * tf.range(batch_size))
# zero-out teacher_vals if there are no hints
teacher_vals *= (
1 - tf.to_float(tf.equal(0.0, tf.reduce_sum(teacher_hints, 1))))
# we'll determine whether to do an update to memory based on whether
# memory was queried correctly
sliced_hints = tf.slice(teacher_hints, [0, 0], [-1, self.correct_in_top])
incorrect_memory_lookup = tf.equal(0.0, tf.reduce_sum(sliced_hints, 1))
# loss based on triplet loss
teacher_loss = (tf.nn.relu(neg_teacher_vals - teacher_vals + self.alpha)
- self.alpha)
# prepare memory updates
update_keys = normalized_query
update_vals = intended_output
fetched_idxs = teacher_idxs # correctly fetched from memory
with tf.device(self.var_cache_device):
fetched_keys = tf.gather(self.mem_keys, fetched_idxs, name='fetched_keys')
fetched_vals = tf.gather(self.mem_vals, fetched_idxs, name='fetched_vals')
# do memory updates here
fetched_keys_upd = update_keys + fetched_keys # Momentum-like update
fetched_keys_upd = tf.nn.l2_normalize(fetched_keys_upd, dim=1)
# Randomize age a bit, e.g., to select different ones in parallel workers.
mem_age_with_noise = self.mem_age + tf.random_uniform(
[self.memory_size], - self.age_noise, self.age_noise)
_, oldest_idxs = tf.nn.top_k(mem_age_with_noise, k=batch_size, sorted=False)
with tf.control_dependencies([result]):
upd_idxs = tf.where(incorrect_memory_lookup,
oldest_idxs,
fetched_idxs)
# upd_idxs = tf.Print(upd_idxs, [upd_idxs], "UPD IDX", summarize=8)
upd_keys = tf.where(incorrect_memory_lookup,
update_keys,
fetched_keys_upd)
upd_vals = tf.where(incorrect_memory_lookup,
update_vals,
fetched_vals)
def make_update_op():
return self.make_update_op(upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output)
update_op = tf.cond(self.update_memory, make_update_op, tf.no_op)
with tf.control_dependencies([update_op]):
result = tf.identity(result)
mask = tf.identity(mask)
teacher_loss = tf.identity(teacher_loss)
return result, mask, tf.reduce_mean(teacher_loss)
class LSHMemory(Memory):
"""Memory employing locality sensitive hashing.
Note: Not fully tested.
"""
def __init__(self, key_dim, memory_size, vocab_size,
choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
var_cache_device='', nn_device='',
num_hashes=None, num_libraries=None):
super(LSHMemory, self).__init__(
key_dim, memory_size, vocab_size,
choose_k=choose_k, alpha=alpha, correct_in_top=1, age_noise=age_noise,
var_cache_device=var_cache_device, nn_device=nn_device)
self.num_libraries = num_libraries or int(self.choose_k ** 0.5)
self.num_per_hash_slot = max(1, self.choose_k // self.num_libraries)
self.num_hashes = (num_hashes or
int(np.log2(self.memory_size / self.num_per_hash_slot)))
self.num_hashes = min(max(self.num_hashes, 1), 20)
self.num_hash_slots = 2 ** self.num_hashes
# hashing vectors
self.hash_vecs = [
tf.get_variable(
'hash_vecs%d' % i, [self.num_hashes, self.key_dim],
dtype=tf.float32, trainable=False,
initializer=tf.truncated_normal_initializer(0, 1))
for i in xrange(self.num_libraries)]
# map representing which hash slots map to which mem keys
self.hash_slots = [
tf.get_variable(
'hash_slots%d' % i, [self.num_hash_slots, self.num_per_hash_slot],
dtype=tf.int32, trainable=False,
initializer=tf.random_uniform_initializer(maxval=self.memory_size,
dtype=tf.int32))
for i in xrange(self.num_libraries)]
def get(self): # not implemented
return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
def set(self, k, v, a, r=None): # not implemented
return tf.group(
self.mem_keys.assign(k),
self.mem_vals.assign(v),
self.mem_age.assign(a),
(self.recent_idx.assign(r) if r is not None else tf.group()))
def clear(self):
return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
self.recent_idx] + self.hash_slots)
def get_hash_slots(self, query):
"""Gets hashed-to buckets for batch of queries.
Args:
query: 2-d Tensor of query vectors.
Returns:
A list of hashed-to buckets for each hash function.
"""
binary_hash = [
tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
for i in xrange(self.num_libraries)]
hash_slot_idxs = [
tf.reduce_sum(
tf.to_int32(binary_hash[i]) *
tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
dtype=tf.int32), 1)
for i in xrange(self.num_libraries)]
return hash_slot_idxs
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# get hash of query vecs
hash_slot_idxs = self.get_hash_slots(normalized_query)
# grab mem idxs in the hash slots
hint_pool_idxs = [
tf.maximum(tf.minimum(
tf.gather(self.hash_slots[i], idxs),
self.memory_size - 1), 0)
for i, idxs in enumerate(hash_slot_idxs)]
return tf.concat(axis=1, values=hint_pool_idxs)
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output):
"""Function that creates all the update ops."""
base_update_op = super(LSHMemory, self).make_update_op(
upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output)
# compute hash slots to be updated
hash_slot_idxs = self.get_hash_slots(upd_keys)
# make updates
update_ops = []
with tf.control_dependencies([base_update_op]):
for i, slot_idxs in enumerate(hash_slot_idxs):
# for each slot, choose which entry to replace
entry_idx = tf.random_uniform([batch_size],
maxval=self.num_per_hash_slot,
dtype=tf.int32)
entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot,
dtype=tf.int32)
entry_add = (tf.expand_dims(upd_idxs, 1) *
tf.one_hot(entry_idx, self.num_per_hash_slot,
dtype=tf.int32))
mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul)
with tf.control_dependencies([mul_op]):
add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add)
update_ops.append(add_op)
return tf.group(*update_ops)
|