File size: 8,925 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A common dataset reader."""

from typing import Any, Callable, List, Optional

import tensorflow as tf
import tensorflow_datasets as tfds

from official.modeling.hyperparams import config_definitions as cfg


class InputReader:
  """Input reader that returns a tf.data.Dataset instance."""

  def __init__(self,
               params: cfg.DataConfig,
               shards: Optional[List[str]] = None,
               dataset_fn=tf.data.TFRecordDataset,
               decoder_fn: Optional[Callable[..., Any]] = None,
               parser_fn: Optional[Callable[..., Any]] = None,
               dataset_transform_fn: Optional[Callable[[tf.data.Dataset],
                                                       tf.data.Dataset]] = None,
               postprocess_fn: Optional[Callable[..., Any]] = None):
    """Initializes an InputReader instance.

    Args:
      params: A config_definitions.DataConfig object.
      shards: A list of files to be read. If given, read from these files.
        Otherwise, read from params.input_path.
      dataset_fn: A `tf.data.Dataset` that consumes the input files. For
        example, it can be `tf.data.TFRecordDataset`.
      decoder_fn: An optional `callable` that takes the serialized data string
        and decodes them into the raw tensor dictionary.
      parser_fn: An optional `callable` that takes the decoded raw tensors dict
        and parse them into a dictionary of tensors that can be consumed by the
        model. It will be executed after decoder_fn.
      dataset_transform_fn: An optional `callable` that takes a
        `tf.data.Dataset` object and returns a `tf.data.Dataset`. It will be
        executed after parser_fn.
      postprocess_fn: A optional `callable` that processes batched tensors. It
        will be executed after batching.
    """
    if params.input_path and params.tfds_name:
      raise ValueError('At most one of `input_path` and `tfds_name` can be '
                       'specified, but got %s and %s.' % (
                           params.input_path, params.tfds_name))
    self._shards = shards
    self._tfds_builder = None
    if self._shards:
      self._num_files = len(self._shards)
    elif not params.tfds_name:
      self._input_patterns = params.input_path.strip().split(',')
      self._num_files = 0
      for input_pattern in self._input_patterns:
        input_pattern = input_pattern.strip()
        if not input_pattern:
          continue
        matched_files = tf.io.gfile.glob(input_pattern)
        if not matched_files:
          raise ValueError('%s does not match any files.' % input_pattern)
        else:
          self._num_files += len(matched_files)
      if self._num_files == 0:
        raise ValueError('%s does not match any files.' % params.input_path)
    else:
      if not params.tfds_split:
        raise ValueError(
            '`tfds_name` is %s, but `tfds_split` is not specified.' %
            params.tfds_name)
      self._tfds_builder = tfds.builder(
          params.tfds_name, data_dir=params.tfds_data_dir)

    self._global_batch_size = params.global_batch_size
    self._is_training = params.is_training
    self._drop_remainder = params.drop_remainder
    self._shuffle_buffer_size = params.shuffle_buffer_size
    self._cache = params.cache
    self._cycle_length = params.cycle_length
    self._block_length = params.block_length
    self._sharding = params.sharding
    self._examples_consume = params.examples_consume
    self._tfds_split = params.tfds_split
    self._tfds_download = params.tfds_download
    self._tfds_as_supervised = params.tfds_as_supervised
    self._tfds_skip_decoding_feature = params.tfds_skip_decoding_feature

    self._dataset_fn = dataset_fn
    self._decoder_fn = decoder_fn
    self._parser_fn = parser_fn
    self._dataset_transform_fn = dataset_transform_fn
    self._postprocess_fn = postprocess_fn

  def _read_sharded_files(
      self,
      input_context: Optional[tf.distribute.InputContext] = None):
    """Reads a dataset from sharded files."""
    # Read from `self._shards` if it is provided.
    if self._shards:
      dataset = tf.data.Dataset.from_tensor_slices(self._shards)
    else:
      dataset = tf.data.Dataset.list_files(
          self._input_patterns, shuffle=self._is_training)
    if self._sharding and input_context and (
        input_context.num_input_pipelines > 1):
      dataset = dataset.shard(input_context.num_input_pipelines,
                              input_context.input_pipeline_id)
    if self._is_training:
      dataset = dataset.repeat()

    dataset = dataset.interleave(
        map_func=self._dataset_fn,
        cycle_length=self._cycle_length,
        block_length=self._block_length,
        num_parallel_calls=tf.data.experimental.AUTOTUNE)
    return dataset

  def _read_single_file(
      self,
      input_context: Optional[tf.distribute.InputContext] = None):
    """Reads a dataset from a single file."""
    # Read from `self._shards` if it is provided.
    dataset = self._dataset_fn(self._shards or self._input_patterns)

    # When `input_file` is a path to a single file, disable auto sharding
    # so that same input file is sent to all workers.
    options = tf.data.Options()
    options.experimental_distribute.auto_shard_policy = (
        tf.data.experimental.AutoShardPolicy.OFF)
    dataset = dataset.with_options(options)
    if self._sharding and input_context and (
        input_context.num_input_pipelines > 1):
      dataset = dataset.shard(input_context.num_input_pipelines,
                              input_context.input_pipeline_id)
    if self._is_training:
      dataset = dataset.repeat()
    return dataset

  def _read_tfds(
      self,
      input_context: Optional[tf.distribute.InputContext] = None
  ) -> tf.data.Dataset:
    """Reads a dataset from tfds."""
    if self._tfds_download:
      self._tfds_builder.download_and_prepare()

    read_config = tfds.ReadConfig(
        interleave_cycle_length=self._cycle_length,
        interleave_block_length=self._block_length,
        input_context=input_context)
    decoders = {}
    if self._tfds_skip_decoding_feature:
      for skip_feature in self._tfds_skip_decoding_feature.split(','):
        decoders[skip_feature.strip()] = tfds.decode.SkipDecoding()
    dataset = self._tfds_builder.as_dataset(
        split=self._tfds_split,
        shuffle_files=self._is_training,
        as_supervised=self._tfds_as_supervised,
        decoders=decoders,
        read_config=read_config)
    return dataset

  @property
  def tfds_info(self) -> tfds.core.DatasetInfo:
    """Returns TFDS dataset info, if available."""
    if self._tfds_builder:
      return self._tfds_builder.info
    else:
      raise ValueError('tfds_info is not available, because the dataset '
                       'is not loaded from tfds.')

  def read(
      self,
      input_context: Optional[tf.distribute.InputContext] = None
  ) -> tf.data.Dataset:
    """Generates a tf.data.Dataset object."""
    if self._tfds_builder:
      dataset = self._read_tfds(input_context)
    elif self._num_files > 1:
      dataset = self._read_sharded_files(input_context)
    else:
      assert self._num_files == 1
      dataset = self._read_single_file(input_context)

    if self._cache:
      dataset = dataset.cache()

    if self._is_training:
      dataset = dataset.shuffle(self._shuffle_buffer_size)

    if self._examples_consume > 0:
      dataset = dataset.take(self._examples_consume)

    def maybe_map_fn(dataset, fn):
      return dataset if fn is None else dataset.map(
          fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    dataset = maybe_map_fn(dataset, self._decoder_fn)
    dataset = maybe_map_fn(dataset, self._parser_fn)

    if self._dataset_transform_fn is not None:
      dataset = self._dataset_transform_fn(dataset)

    per_replica_batch_size = input_context.get_per_replica_batch_size(
        self._global_batch_size) if input_context else self._global_batch_size

    dataset = dataset.batch(
        per_replica_batch_size, drop_remainder=self._drop_remainder)
    dataset = maybe_map_fn(dataset, self._postprocess_fn)
    return dataset.prefetch(tf.data.experimental.AUTOTUNE)