import streamlit as st from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="Mykes/med_gemma7b_gguf", filename="*Q4_K_M.gguf", verbose=False ) basic_prompt = "Below is the context which is your conversation history and the last user question. Write a response according the context and question. ### Context: user: Ответь мне на вопрос о моем здоровье. assistant: Конечно! Какой у Вас вопрос? ### Question: {question} ### Response:" def generate_response(question): model_input = basic_prompt.format(question=input_text) if question: output = llm( model_input, # Prompt max_tokens=32, # Generate up to 32 tokens, set to None to generate up to the end of the context window stop=[""], echo=False # Echo the prompt back in the output ) # Generate a completion, can also call create_completion st.write(output["choices"][0]["text"]) else: st.write("Please enter a question to get a response.") # Streamlit text input widget input_text = st.text_input('Задайте мне медицинский вопрос...') # Button to trigger response generation if st.button('Generate Response'): generate_response(input_text)