### Invoice extractor ##Importing All the modules import streamlit as st import os from PIL import Image import google.generativeai as genai from dotenv import load_dotenv # Load all environment Variables load_dotenv() ##Configuring the api key genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) ## Function to load Gemini Vison Pro Vision Model and Get response def get_gemini_response(input,image,prompt): ##Loading the desired Model model= genai.GenerativeModel("gemini-pro-vision") response=model.generate_content([input,image[0],prompt]) return response.text ## Function to extract data from Image Uploaded def input_image_setup(uploaded_file): # Check if a file has been uploaded if uploaded_file is not None: # Read the file into bytes bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") # Initializing our Streamlit Prompt st.set_page_config(page_title="Gemini Image Demo") st.header("Gemini Application") input=st.text_input("Input Prompt: ",key="input") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) image="" if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) submit=st.button("Tell me about the image") ## DEFINING A SYSTEM PROMPT input_prompt = "You are an expert in understanding invoices.You will receive invoices as input images and you will have to answer question based on the input image." if submit: image_data = input_image_setup(uploaded_file) response = get_gemini_response(input_prompt,image_data,input) st.subheader("The Response Generated by your model Gemini Pro Vision is: ") st.write(response) st.balloons()