Spaces:
Running
Running
import streamlit as st | |
st.set_page_config(layout="wide") | |
for name in dir(): | |
if not name.startswith('_'): | |
del globals()[name] | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
import gc | |
def init_conn(): | |
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] | |
credentials = { | |
"type": "service_account", | |
"project_id": "model-sheets-connect", | |
"private_key_id": st.secrets['model_sheets_connect_pk'], | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n", | |
"client_email": "[email protected]", | |
"client_id": "100369174533302798535", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com" | |
} | |
credentials2 = { | |
"type": "service_account", | |
"project_id": "sheets-api-connect-378620", | |
"private_key_id": st.secrets['sheets_api_connect_pk'], | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n", | |
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com", | |
"client_id": "106625872877651920064", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com" | |
} | |
NHL_Data = st.secrets['NHL_Data'] | |
gc = gspread.service_account_from_dict(credentials) | |
gc2 = gspread.service_account_from_dict(credentials2) | |
return gc, gc2, NHL_Data | |
gcservice_account, gcservice_account2, NHL_Data = init_conn() | |
def init_baselines(): | |
sh = gcservice_account.open_by_url(NHL_Data) | |
worksheet = sh.worksheet('Gamelog') | |
raw_display = pd.DataFrame(worksheet.get_values()) | |
raw_display.columns = raw_display.iloc[0] | |
raw_display = raw_display[1:] | |
raw_display = raw_display.reset_index(drop=True) | |
gamelog_table = raw_display[raw_display['Player'] != ""] | |
gamelog_table = gamelog_table[['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'TotalAssists', 'FirstAssists', 'SecondAssists', 'TotalPoints', 'IPP', | |
'Shots', 'SH%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'RushAttempts', 'ReboundsCreated', 'PIM', 'TotalPenalties', 'Minor', | |
'Major', 'PenaltiesDrawn', 'Giveaways', 'Takeaways', 'Hits', 'HitsTaken', 'ShotsBlocked', 'FaceoffsWon', | |
'FaceoffsLost', 'Faceoffs%']] | |
gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP', | |
'Shots', 'SH%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor', | |
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'Faceoffs %'], axis=1) | |
data_cols = gamelog_table.columns.drop(['Player', 'Team', 'Position', 'Date']) | |
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce') | |
gamelog_table['Date'] = pd.to_datetime(gamelog_table['Date']).dt.date | |
gamelog_table['dk_shots_bonus'] = np.where((gamelog_table['Shots'] >= 5), 1, 0) | |
gamelog_table['dk_blocks_bonus'] = np.where((gamelog_table['Shots Blocked'] >= 3), 1, 0) | |
gamelog_table['dk_goals_bonus'] = np.where((gamelog_table['Goals'] >= 3), 1, 0) | |
gamelog_table['dk_points_bonus'] = np.where((gamelog_table['Total Points'] >= 3), 1, 0) | |
gamelog_table['dk_fantasy'] = sum([(gamelog_table['Goals'] * 8.5), (gamelog_table['Total Assists'] * 5), (gamelog_table['Shots'] * 1.5), | |
(gamelog_table['Shots Blocked'] * 1.3), (gamelog_table['dk_shots_bonus'] * 3), (gamelog_table['dk_blocks_bonus'] * 3), | |
(gamelog_table['dk_goals_bonus'] * 3), (gamelog_table['dk_points_bonus'] * 3)]).astype(float).round(2) | |
gamelog_table['fd_fantasy'] = sum([(gamelog_table['Goals'] * 12), (gamelog_table['Total Assists'] * 8), (gamelog_table['Shots'] * 1.6), | |
(gamelog_table['Shots Blocked'] * 1.6)]).astype(float).round(2) | |
gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP', | |
'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor', | |
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus', | |
'dk_fantasy', 'fd_fantasy'], axis=1) | |
return gamelog_table | |
def seasonlong_build(data_sample): | |
season_long_table = data_sample[['Player', 'Team', 'Position']] | |
season_long_table['TOI'] = data_sample.groupby(['Player', 'Team'], sort=False)['TOI'].transform('mean').astype(float) | |
season_long_table['Goals'] = data_sample.groupby(['Player', 'Team'], sort=False)['Goals'].transform('mean').astype(float) | |
season_long_table['Total Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Assists'].transform('mean').astype(float) | |
season_long_table['First Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['First Assists'].transform('mean').astype(float) | |
season_long_table['Second Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['Second Assists'].transform('mean').astype(float) | |
season_long_table['Total Points'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Points'].transform('mean').astype(float) | |
season_long_table['IPP'] = data_sample.groupby(['Player', 'Team'], sort=False)['IPP'].transform('mean').astype(float) | |
season_long_table['Shots'] = data_sample.groupby(['Player', 'Team'], sort=False)['Shots'].transform('mean').astype(float) | |
season_long_table['ixG'] = data_sample.groupby(['Player', 'Team'], sort=False)['ixG'].transform('mean').astype(float) | |
season_long_table['iCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iCF'].transform('mean').astype(float) | |
season_long_table['iFF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iFF'].transform('mean').astype(float) | |
season_long_table['iSCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iSCF'].transform('mean').astype(float) | |
season_long_table['iHDCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iHDCF'].transform('mean').astype(float) | |
season_long_table['Rush Attempts'] = data_sample.groupby(['Player', 'Team'], sort=False)['Rush Attempts'].transform('mean').astype(float) | |
season_long_table['Rebounds Created'] = data_sample.groupby(['Player', 'Team'], sort=False)['Rebounds Created'].transform('mean').astype(float) | |
season_long_table['PIM'] = data_sample.groupby(['Player', 'Team'], sort=False)['PIM'].transform('mean').astype(float) | |
season_long_table['Total Penalties'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Penalties'].transform('mean').astype(float) | |
season_long_table['Minor'] = data_sample.groupby(['Player', 'Team'], sort=False)['Minor'].transform('mean').astype(float) | |
season_long_table['Major'] = data_sample.groupby(['Player', 'Team'], sort=False)['Major'].transform('mean').astype(float) | |
season_long_table['Penalties Drawn'] = data_sample.groupby(['Player', 'Team'], sort=False)['Penalties Drawn'].transform('mean').astype(float) | |
season_long_table['Giveaways'] = data_sample.groupby(['Player', 'Team'], sort=False)['Giveaways'].transform('mean').astype(float) | |
season_long_table['Takeaways'] = data_sample.groupby(['Player', 'Team'], sort=False)['Takeaways'].transform('mean').astype(float) | |
season_long_table['Hits'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hits'].transform('mean').astype(float) | |
season_long_table['Hits Taken'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hits Taken'].transform('mean').astype(float) | |
season_long_table['Shots Blocked'] = data_sample.groupby(['Player', 'Team'], sort=False)['Shots Blocked'].transform('mean').astype(float) | |
season_long_table['Faceoffs Won'] = data_sample.groupby(['Player', 'Team'], sort=False)['Faceoffs Won'].transform('mean').astype(float) | |
season_long_table['Faceoffs Lost'] = data_sample.groupby(['Player', 'Team'], sort=False)['Faceoffs Lost'].transform('mean').astype(float) | |
season_long_table['dk_shots_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_shots_bonus'].transform('mean').astype(float) | |
season_long_table['dk_blocks_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_blocks_bonus'].transform('mean').astype(float) | |
season_long_table['dk_goals_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_goals_bonus'].transform('mean').astype(float) | |
season_long_table['dk_points_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_points_bonus'].transform('mean').astype(float) | |
season_long_table['dk_fantasy'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_fantasy'].transform('mean').astype(float) | |
season_long_table['fd_fantasy'] = data_sample.groupby(['Player', 'Team'], sort=False)['fd_fantasy'].transform('mean').astype(float) | |
season_long_table = season_long_table.drop_duplicates(subset='Player') | |
season_long_table = season_long_table.sort_values(by='dk_fantasy', ascending=False) | |
season_long_table = season_long_table.set_axis(['Player', 'Team', 'Position', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', | |
'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', | |
'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus', | |
'dk_fantasy', 'fd_fantasy'], axis=1) | |
return season_long_table | |
def run_fantasy_corr(data_sample): | |
cor_testing = data_sample | |
date_list = cor_testing['Date'].unique().tolist() | |
player_list = cor_testing['Player'].unique().tolist() | |
corr_frame = pd.DataFrame() | |
corr_frame['DATE'] = date_list | |
for player in player_list: | |
player_testing = cor_testing[cor_testing['Player'] == player] | |
fantasy_map = dict(zip(player_testing['Date'], player_testing['dk_fantasy'])) | |
corr_frame[player] = corr_frame['DATE'].map(fantasy_map) | |
players_fantasy = corr_frame.drop('DATE', axis=1) | |
corrM = players_fantasy.corr() | |
return corrM | |
def run_min_corr(data_sample): | |
cor_testing = data_sample | |
date_list = cor_testing['Date'].unique().tolist() | |
player_list = cor_testing['Player'].unique().tolist() | |
corr_frame = pd.DataFrame() | |
corr_frame['DATE'] = date_list | |
for player in player_list: | |
player_testing = cor_testing[cor_testing['Player'] == player] | |
fantasy_map = dict(zip(player_testing['Date'], player_testing['TOI'])) | |
corr_frame[player] = corr_frame['DATE'].map(fantasy_map) | |
players_fantasy = corr_frame.drop('DATE', axis=1) | |
corrM = players_fantasy.corr() | |
return corrM | |
def split_frame(input_df, rows): | |
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)] | |
return df | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
gamelog_table = init_baselines() | |
basic_cols = ['Player', 'Team', 'Position', 'Date', 'TOI'] | |
basic_season_cols = ['Player', 'Team', 'Position', 'TOI'] | |
data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP', | |
'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor', | |
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus', | |
'dk_fantasy', 'fd_fantasy'] | |
season_data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', | |
'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', | |
'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus', | |
'dk_fantasy', 'fd_fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
tab1, tab2 = st.tabs(['Gamelogs', 'Correlation Matrix']) | |
with tab1: | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset1'): | |
st.cache_data.clear() | |
gamelog_table = init_baselines() | |
basic_cols = ['Player', 'Team', 'Position', 'Date', 'TOI'] | |
basic_season_cols = ['Player', 'Team', 'Position', 'TOI'] | |
data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP', | |
'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor', | |
'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus', | |
'dk_fantasy', 'fd_fantasy'] | |
season_data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', | |
'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', | |
'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won', | |
'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus', | |
'dk_fantasy', 'fd_fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1') | |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2') | |
if split_var2 == 'Specific Teams': | |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1') | |
elif split_var2 == 'All': | |
team_var1 = total_teams | |
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3') | |
if split_var3 == 'Specific Dates': | |
low_date = st.date_input('Min Date:', value=None, format="MM/DD/YYYY", key='low_date') | |
if low_date is not None: | |
low_date = pd.to_datetime(low_date).date() | |
high_date = st.date_input('Max Date:', value=None, format="MM/DD/YYYY", key='high_date') | |
if high_date is not None: | |
high_date = pd.to_datetime(high_date).date() | |
elif split_var3 == 'All': | |
low_date = gamelog_table['Date'].min() | |
high_date = gamelog_table['Date'].max() | |
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4') | |
if split_var4 == 'Specific Players': | |
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1') | |
elif split_var4 == 'All': | |
player_var1 = total_players | |
min_var1 = st.slider("Is there a certain TOI range you want to view?", 0, 50, (0, 50), key='min_var1') | |
with col2: | |
working_data = gamelog_table | |
if split_var1 == 'Season Logs': | |
choose_cols = st.container() | |
with choose_cols: | |
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display') | |
disp_stats = basic_season_cols + choose_disp | |
display = st.container() | |
working_data = working_data[working_data['Date'] >= low_date] | |
working_data = working_data[working_data['Date'] <= high_date] | |
working_data = working_data[working_data['TOI'] >= min_var1[0]] | |
working_data = working_data[working_data['TOI'] <= min_var1[1]] | |
working_data = working_data[working_data['Team'].isin(team_var1)] | |
working_data = working_data[working_data['Player'].isin(player_var1)] | |
season_long_table = seasonlong_build(working_data) | |
season_long_table = season_long_table.set_index('Player') | |
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns") | |
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True) | |
st.download_button( | |
label="Export seasonlogs Model", | |
data=convert_df_to_csv(season_long_table), | |
file_name='Seasonlogs_NHL_View.csv', | |
mime='text/csv', | |
) | |
elif split_var1 == 'Gamelogs': | |
choose_cols = st.container() | |
with choose_cols: | |
choose_disp = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='col_display') | |
gamelog_disp_stats = basic_cols + choose_disp | |
working_data = working_data[working_data['Date'] >= low_date] | |
working_data = working_data[working_data['Date'] <= high_date] | |
working_data = working_data[working_data['TOI'] >= min_var1[0]] | |
working_data = working_data[working_data['TOI'] <= min_var1[1]] | |
working_data = working_data[working_data['Team'].isin(team_var1)] | |
working_data = working_data[working_data['Player'].isin(player_var1)] | |
working_data = working_data.sort_values(by='Date', ascending=False) | |
working_data = working_data.reset_index(drop=True) | |
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns") | |
display = st.container() | |
bottom_menu = st.columns((4, 1, 1)) | |
with bottom_menu[2]: | |
batch_size = st.selectbox("Page Size", options=[25, 50, 100]) | |
with bottom_menu[1]: | |
total_pages = ( | |
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1 | |
) | |
current_page = st.number_input( | |
"Page", min_value=1, max_value=total_pages, step=1 | |
) | |
with bottom_menu[0]: | |
st.markdown(f"Page **{current_page}** of **{total_pages}** ") | |
pages = split_frame(gamelog_data, batch_size) | |
# pages = pages.set_index('Player') | |
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export gamelogs Model", | |
data=convert_df_to_csv(gamelog_data), | |
file_name='Gamelogs_NBA_View.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset2'): | |
st.cache_data.clear() | |
gamelog_table = init_baselines() | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
corr_var = st.radio("Are you correlating fantasy or TOI?", ('Fantasy', 'TOI'), key='corr_var') | |
split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2') | |
if split_var1_t2 == 'Specific Teams': | |
corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2') | |
elif split_var1_t2 == 'Specific Players': | |
corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2') | |
split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2') | |
if split_var2_t2 == 'Specific Dates': | |
low_date_t2 = st.date_input('Min Date:', value=None, format="MM/DD/YYYY", key='low_date_t2') | |
if low_date_t2 is not None: | |
low_date_t2 = pd.to_datetime(low_date_t2).date() | |
high_date_t2 = st.date_input('Max Date:', value=None, format="MM/DD/YYYY", key='high_date_t2') | |
if high_date_t2 is not None: | |
high_date_t2 = pd.to_datetime(high_date_t2).date() | |
elif split_var2_t2 == 'All': | |
low_date_t2 = gamelog_table['Date'].min() | |
high_date_t2 = gamelog_table['Date'].max() | |
min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 50, (0, 50), key='min_var1_t2') | |
with col2: | |
if split_var1_t2 == 'Specific Teams': | |
display = st.container() | |
gamelog_table = gamelog_table.sort_values(by='dk_fantasy', ascending=False) | |
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2] | |
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2] | |
gamelog_table = gamelog_table[gamelog_table['TOI'] >= min_var1_t2[0]] | |
gamelog_table = gamelog_table[gamelog_table['TOI'] <= min_var1_t2[1]] | |
gamelog_table = gamelog_table[gamelog_table['Team'].isin(corr_var1_t2)] | |
if corr_var == 'Fantasy': | |
corr_display = run_fantasy_corr(gamelog_table) | |
elif corr_var == 'TOI': | |
corr_display = run_min_corr(gamelog_table) | |
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True) | |
elif split_var1_t2 == 'Specific Players': | |
display = st.container() | |
gamelog_table = gamelog_table.sort_values(by='dk_fantasy', ascending=False) | |
gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2] | |
gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2] | |
gamelog_table = gamelog_table[gamelog_table['TOI'] >= min_var1_t2[0]] | |
gamelog_table = gamelog_table[gamelog_table['TOI'] <= min_var1_t2[1]] | |
gamelog_table = gamelog_table[gamelog_table['Player'].isin(corr_var1_t2)] | |
if corr_var == 'Fantasy': | |
corr_display = run_fantasy_corr(gamelog_table) | |
elif corr_var == 'TOI': | |
corr_display = run_min_corr(gamelog_table) | |
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |