James McCool
commited on
Commit
·
337c221
1
Parent(s):
bf78c1d
Refactor app.py to remove Google Sheets integration and streamline database connections. Update seed frame functions to utilize MongoDB collections for player name mapping, enhancing data retrieval for DraftKings and FanDuel simulations. Improve overall code clarity and maintainability.
Browse files
app.py
CHANGED
@@ -2,52 +2,19 @@ import streamlit as st
|
|
2 |
st.set_page_config(layout="wide")
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
-
import gspread
|
6 |
import pymongo
|
7 |
import time
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
11 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
12 |
-
|
13 |
-
credentials = {
|
14 |
-
"type": "service_account",
|
15 |
-
"project_id": "model-sheets-connect",
|
16 |
-
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
17 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
18 |
-
"client_email": "[email protected]",
|
19 |
-
"client_id": "100369174533302798535",
|
20 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
21 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
22 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
23 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
24 |
-
}
|
25 |
-
|
26 |
-
credentials2 = {
|
27 |
-
"type": "service_account",
|
28 |
-
"project_id": "sheets-api-connect-378620",
|
29 |
-
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
30 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
31 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
32 |
-
"client_id": "106625872877651920064",
|
33 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
34 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
35 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
36 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
37 |
-
}
|
38 |
|
39 |
uri = st.secrets['mongo_uri']
|
40 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
41 |
db = client["NFL_Database"]
|
42 |
-
|
43 |
-
NFL_Data = st.secrets['NFL_Data']
|
44 |
-
|
45 |
-
gc = gspread.service_account_from_dict(credentials)
|
46 |
-
gc2 = gspread.service_account_from_dict(credentials2)
|
47 |
|
48 |
-
return
|
49 |
|
50 |
-
|
51 |
|
52 |
percentages_format = {'Exposure': '{:.2%}'}
|
53 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
@@ -55,49 +22,85 @@ dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'sal
|
|
55 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
56 |
|
57 |
@st.cache_data(ttl = 600)
|
58 |
-
def init_DK_seed_frames(sharp_split):
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
collection = db["DK_NFL_seed_frame"]
|
61 |
cursor = collection.find().limit(sharp_split)
|
62 |
|
63 |
raw_display = pd.DataFrame(list(cursor))
|
64 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
65 |
DK_seed = raw_display.to_numpy()
|
66 |
|
67 |
return DK_seed
|
68 |
|
69 |
@st.cache_data(ttl = 600)
|
70 |
def init_DK_Secondary_seed_frames(sharp_split):
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
73 |
cursor = collection.find().limit(sharp_split)
|
74 |
|
75 |
raw_display = pd.DataFrame(list(cursor))
|
76 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
77 |
DK_seed = raw_display.to_numpy()
|
78 |
|
79 |
return DK_seed
|
80 |
|
81 |
@st.cache_data(ttl = 599)
|
82 |
-
def init_FD_seed_frames(sharp_split):
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
collection = db["FD_NFL_seed_frame"]
|
85 |
cursor = collection.find().limit(sharp_split)
|
86 |
|
87 |
raw_display = pd.DataFrame(list(cursor))
|
88 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
89 |
FD_seed = raw_display.to_numpy()
|
90 |
|
91 |
return FD_seed
|
92 |
|
93 |
@st.cache_data(ttl = 599)
|
94 |
def init_FD_Secondary_seed_frames(sharp_split):
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
collection = db["FD_NFL_Secondary_seed_frame"]
|
97 |
cursor = collection.find().limit(sharp_split)
|
98 |
|
99 |
raw_display = pd.DataFrame(list(cursor))
|
100 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
101 |
FD_seed = raw_display.to_numpy()
|
102 |
|
103 |
return FD_seed
|
@@ -359,11 +362,10 @@ with tab1:
|
|
359 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
360 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
361 |
}
|
|
|
362 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
363 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
364 |
|
365 |
-
#st.table(Sim_Winner_Frame)
|
366 |
-
|
367 |
# Initial setup
|
368 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
369 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
@@ -409,6 +411,7 @@ with tab1:
|
|
409 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
410 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
411 |
}
|
|
|
412 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
413 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
414 |
|
|
|
2 |
st.set_page_config(layout="wide")
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
5 |
import pymongo
|
6 |
import time
|
7 |
|
8 |
@st.cache_resource
|
9 |
def init_conn():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
uri = st.secrets['mongo_uri']
|
12 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
13 |
db = client["NFL_Database"]
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
return db
|
16 |
|
17 |
+
db = init_conn()
|
18 |
|
19 |
percentages_format = {'Exposure': '{:.2%}'}
|
20 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
|
|
22 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
|
24 |
@st.cache_data(ttl = 600)
|
25 |
+
def init_DK_seed_frames(sharp_split):
|
26 |
+
|
27 |
+
collection = db['DK_NFL_name_map']
|
28 |
+
cursor = collection.find()
|
29 |
+
raw_data = pd.DataFrame(list(cursor))
|
30 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
31 |
|
32 |
collection = db["DK_NFL_seed_frame"]
|
33 |
cursor = collection.find().limit(sharp_split)
|
34 |
|
35 |
raw_display = pd.DataFrame(list(cursor))
|
36 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
37 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
38 |
+
st.write("converting names")
|
39 |
+
for col in dict_columns:
|
40 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
41 |
DK_seed = raw_display.to_numpy()
|
42 |
|
43 |
return DK_seed
|
44 |
|
45 |
@st.cache_data(ttl = 600)
|
46 |
def init_DK_Secondary_seed_frames(sharp_split):
|
47 |
+
|
48 |
+
collection = db['DK_NFL_Secondary_name_map']
|
49 |
+
cursor = collection.find()
|
50 |
+
raw_data = pd.DataFrame(list(cursor))
|
51 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
52 |
|
53 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
54 |
cursor = collection.find().limit(sharp_split)
|
55 |
|
56 |
raw_display = pd.DataFrame(list(cursor))
|
57 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
58 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
59 |
+
st.write("converting names")
|
60 |
+
for col in dict_columns:
|
61 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
62 |
DK_seed = raw_display.to_numpy()
|
63 |
|
64 |
return DK_seed
|
65 |
|
66 |
@st.cache_data(ttl = 599)
|
67 |
+
def init_FD_seed_frames(sharp_split):
|
68 |
+
|
69 |
+
collection = db['FD_NFL_name_map']
|
70 |
+
cursor = collection.find()
|
71 |
+
raw_data = pd.DataFrame(list(cursor))
|
72 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
73 |
|
74 |
collection = db["FD_NFL_seed_frame"]
|
75 |
cursor = collection.find().limit(sharp_split)
|
76 |
|
77 |
raw_display = pd.DataFrame(list(cursor))
|
78 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
79 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
80 |
+
st.write("converting names")
|
81 |
+
for col in dict_columns:
|
82 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
83 |
FD_seed = raw_display.to_numpy()
|
84 |
|
85 |
return FD_seed
|
86 |
|
87 |
@st.cache_data(ttl = 599)
|
88 |
def init_FD_Secondary_seed_frames(sharp_split):
|
89 |
+
|
90 |
+
collection = db['FD_NFL_Secondary_name_map']
|
91 |
+
cursor = collection.find()
|
92 |
+
raw_data = pd.DataFrame(list(cursor))
|
93 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
94 |
|
95 |
collection = db["FD_NFL_Secondary_seed_frame"]
|
96 |
cursor = collection.find().limit(sharp_split)
|
97 |
|
98 |
raw_display = pd.DataFrame(list(cursor))
|
99 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
100 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
101 |
+
st.write("converting names")
|
102 |
+
for col in dict_columns:
|
103 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
104 |
FD_seed = raw_display.to_numpy()
|
105 |
|
106 |
return FD_seed
|
|
|
362 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
363 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
364 |
}
|
365 |
+
|
366 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
367 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
368 |
|
|
|
|
|
369 |
# Initial setup
|
370 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
371 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
|
|
411 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
412 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
413 |
}
|
414 |
+
|
415 |
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
416 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
417 |
|