James McCool
Update init_baselines function in app.py to accept a slate variable, allowing dynamic filtering of player data based on the selected slate. Adjusted multiple instances throughout the code to ensure consistent data retrieval for both 'Main Slate' and 'Secondary Slate'. Additionally, refined sharp_split values for improved performance in simulations. This enhances flexibility and user experience in DraftKings and FanDuel simulations.
cf45400
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NFL_Database"]
return db
db = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@st.cache_data(ttl = 600)
def init_DK_seed_frames(sharp_split):
collection = db['DK_NFL_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NFL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 600)
def init_DK_Secondary_seed_frames(sharp_split):
collection = db['DK_NFL_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NFL_Secondary_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sharp_split):
collection = db['FD_NFL_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NFL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_FD_Secondary_seed_frames(sharp_split):
collection = db['FD_NFL_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NFL_Secondary_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_baselines(slate_var):
collection = db["DK_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[raw_display['slate'] == slate_var]
raw_display = raw_display[raw_display['version'] == 'overall']
dk_raw = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
dk_raw['STDev'] = (dk_raw['Ceiling'] - dk_raw['Floor']) / 4
collection = db["FD_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[raw_display['slate'] == slate_var]
raw_display = raw_display[raw_display['version'] == 'overall']
fd_raw = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
fd_raw['STDev'] = (fd_raw['Ceiling'] - fd_raw['Floor']) / 4
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
SimVar = 1
Sim_Winners = []
fp_array = seed_frame.copy()
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-7]),
scale=vec_stdev_map(fp_random[:, :-7])),
axis=1)
]
sample_arrays = sample_arrays1
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw = init_baselines('Main Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
data_export = st.session_state.working_seed.copy()
for col in range(9):
data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NFL_optimals_export.csv',
mime='text/csv',
)
with col2:
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Main Slate')
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Secondary Slate')
raw_baselines = dk_raw
column_names = dk_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Main Slate')
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Secondary Slate')
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw = init_baselines('Main Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 250000
elif strength_var1 == 'Average':
sharp_split = 100000
elif strength_var1 == 'Above Average':
sharp_split = 50000
elif strength_var1 == 'Very':
sharp_split = 10000
with col2:
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Main Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
elif sim_slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Secondary Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Main Slate')
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
elif sim_slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Secondary Slate')
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
qb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
qb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
qb_working['Freq'] = qb_working['Freq'].astype(int)
qb_working['Position'] = qb_working['Player'].map(st.session_state.maps_dict['Pos_map'])
qb_working['Salary'] = qb_working['Player'].map(st.session_state.maps_dict['Salary_map'])
qb_working['Proj Own'] = qb_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
qb_working['Exposure'] = qb_working['Freq']/(1000)
qb_working['Edge'] = qb_working['Exposure'] - qb_working['Proj Own']
qb_working['Team'] = qb_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.qb_freq = qb_working.copy()
if sim_site_var1 == 'Draftkings':
rbwrte_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
rbwrte_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
rbwrte_working['Freq'] = rbwrte_working['Freq'].astype(int)
rbwrte_working['Position'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Pos_map'])
rbwrte_working['Salary'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Salary_map'])
rbwrte_working['Proj Own'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
rbwrte_working['Exposure'] = rbwrte_working['Freq']/(1000)
rbwrte_working['Edge'] = rbwrte_working['Exposure'] - rbwrte_working['Proj Own']
rbwrte_working['Team'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.rbwrte_freq = rbwrte_working.copy()
if sim_site_var1 == 'Draftkings':
rb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:3].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
rb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:3].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
rb_working['Freq'] = rb_working['Freq'].astype(int)
rb_working['Position'] = rb_working['Player'].map(st.session_state.maps_dict['Pos_map'])
rb_working['Salary'] = rb_working['Player'].map(st.session_state.maps_dict['Salary_map'])
rb_working['Proj Own'] = rb_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
rb_working['Exposure'] = rb_working['Freq']/(1000)
rb_working['Edge'] = rb_working['Exposure'] - rb_working['Proj Own']
rb_working['Team'] = rb_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.rb_freq = rb_working.copy()
if sim_site_var1 == 'Draftkings':
wr_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
wr_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
wr_working['Freq'] = wr_working['Freq'].astype(int)
wr_working['Position'] = wr_working['Player'].map(st.session_state.maps_dict['Pos_map'])
wr_working['Salary'] = wr_working['Player'].map(st.session_state.maps_dict['Salary_map'])
wr_working['Proj Own'] = wr_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
wr_working['Exposure'] = wr_working['Freq']/(1000)
wr_working['Edge'] = wr_working['Exposure'] - wr_working['Proj Own']
wr_working['Team'] = wr_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.wr_freq = wr_working.copy()
if sim_site_var1 == 'Draftkings':
te_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
te_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
te_working['Freq'] = te_working['Freq'].astype(int)
te_working['Position'] = te_working['Player'].map(st.session_state.maps_dict['Pos_map'])
te_working['Salary'] = te_working['Player'].map(st.session_state.maps_dict['Salary_map'])
te_working['Proj Own'] = te_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
te_working['Exposure'] = te_working['Freq']/(1000)
te_working['Edge'] = te_working['Exposure'] - te_working['Proj Own']
te_working['Team'] = te_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.te_freq = te_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
dst_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
dst_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
dst_working['Freq'] = dst_working['Freq'].astype(int)
dst_working['Position'] = dst_working['Player'].map(st.session_state.maps_dict['Pos_map'])
dst_working['Salary'] = dst_working['Player'].map(st.session_state.maps_dict['Salary_map'])
dst_working['Proj Own'] = dst_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
dst_working['Exposure'] = dst_working['Freq']/(1000)
dst_working['Edge'] = dst_working['Exposure'] - dst_working['Proj Own']
dst_working['Team'] = dst_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.dst_freq = dst_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_consim_export.csv',
mime='text/csv',
)
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
with tab1:
if 'Sim_Winner_Display' in st.session_state:
# Create a new dataframe with summary statistics
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
st.session_state.Sim_Winner_Display['salary'].min(),
st.session_state.Sim_Winner_Display['salary'].mean(),
st.session_state.Sim_Winner_Display['salary'].max(),
st.session_state.Sim_Winner_Display['salary'].std()
],
'Proj': [
st.session_state.Sim_Winner_Display['proj'].min(),
st.session_state.Sim_Winner_Display['proj'].mean(),
st.session_state.Sim_Winner_Display['proj'].max(),
st.session_state.Sim_Winner_Display['proj'].std()
],
'Own': [
st.session_state.Sim_Winner_Display['Own'].min(),
st.session_state.Sim_Winner_Display['Own'].mean(),
st.session_state.Sim_Winner_Display['Own'].max(),
st.session_state.Sim_Winner_Display['Own'].std()
],
'Fantasy': [
st.session_state.Sim_Winner_Display['Fantasy'].min(),
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
st.session_state.Sim_Winner_Display['Fantasy'].max(),
st.session_state.Sim_Winner_Display['Fantasy'].std()
],
'GPP_Proj': [
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Winning Frame Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Fantasy': '{:.2f}',
'GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
with tab2:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map'])
# Count occurrences of each position in FLEX
flex_counts = flex_positions.value_counts()
# Calculate average statistics for each FLEX position
flex_stats = st.session_state.freq_copy.groupby(flex_positions).agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
flex_summary = pd.concat([flex_counts, flex_stats], axis=1)
flex_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
flex_summary = flex_summary.reset_index()
flex_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
# Display the summary dataframe
st.subheader("FLEX Position Statistics")
st.dataframe(flex_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with st.container():
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB-WR-TE Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'qb_freq' in st.session_state:
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.qb_freq.to_csv().encode('utf-8'),
file_name='qb_freq.csv',
mime='text/csv',
key='qb'
)
with tab3:
if 'rbwrte_freq' in st.session_state:
st.dataframe(st.session_state.rbwrte_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.rbwrte_freq.to_csv().encode('utf-8'),
file_name='rbwrte_freq.csv',
mime='text/csv',
key='rbwrte'
)
with tab4:
if 'rb_freq' in st.session_state:
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.rb_freq.to_csv().encode('utf-8'),
file_name='rb_freq.csv',
mime='text/csv',
key='rb'
)
with tab5:
if 'wr_freq' in st.session_state:
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.wr_freq.to_csv().encode('utf-8'),
file_name='wr_freq.csv',
mime='text/csv',
key='wr'
)
with tab6:
if 'te_freq' in st.session_state:
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.te_freq.to_csv().encode('utf-8'),
file_name='te_freq.csv',
mime='text/csv',
key='te'
)
with tab7:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab8:
if 'dst_freq' in st.session_state:
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.dst_freq.to_csv().encode('utf-8'),
file_name='dst_freq.csv',
mime='text/csv',
key='dst'
)
with tab9:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)