Multichem commited on
Commit
cf4b750
·
verified ·
1 Parent(s): 680be0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -51,8 +51,8 @@ gcservice_account, gcservice_account2, db, NFL_Data = init_conn()
51
 
52
  percentages_format = {'Exposure': '{:.2%}'}
53
  freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
54
- dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
55
- fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']
56
 
57
  @st.cache_data(ttl = 599)
58
  def init_DK_seed_frames():
@@ -61,7 +61,7 @@ def init_DK_seed_frames():
61
  cursor = collection.find()
62
 
63
  raw_display = pd.DataFrame(list(cursor))
64
- raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
65
  DK_seed = raw_display.to_numpy()
66
 
67
  return DK_seed
@@ -73,7 +73,7 @@ def init_FD_seed_frames():
73
  cursor = collection.find()
74
 
75
  raw_display = pd.DataFrame(list(cursor))
76
- raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count']]
77
  FD_seed = raw_display.to_numpy()
78
 
79
  return FD_seed
@@ -140,8 +140,8 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
140
  sample_arrays1 = np.c_[
141
  fp_random,
142
  np.sum(np.random.normal(
143
- loc=vec_projection_map(fp_random[:, :-6]),
144
- scale=vec_stdev_map(fp_random[:, :-6])),
145
  axis=1)
146
  ]
147
 
@@ -306,7 +306,7 @@ with tab1:
306
  Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
307
 
308
  # Type Casting
309
- type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
310
  Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
311
 
312
  # Sorting
@@ -344,7 +344,7 @@ with tab1:
344
  Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
345
 
346
  # Type Casting
347
- type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
348
  Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
349
 
350
  # Sorting
 
51
 
52
  percentages_format = {'Exposure': '{:.2%}'}
53
  freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
54
+ dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
55
+ fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
56
 
57
  @st.cache_data(ttl = 599)
58
  def init_DK_seed_frames():
 
61
  cursor = collection.find()
62
 
63
  raw_display = pd.DataFrame(list(cursor))
64
+ raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
65
  DK_seed = raw_display.to_numpy()
66
 
67
  return DK_seed
 
73
  cursor = collection.find()
74
 
75
  raw_display = pd.DataFrame(list(cursor))
76
+ raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
77
  FD_seed = raw_display.to_numpy()
78
 
79
  return FD_seed
 
140
  sample_arrays1 = np.c_[
141
  fp_random,
142
  np.sum(np.random.normal(
143
+ loc=vec_projection_map(fp_random[:, :-7]),
144
+ scale=vec_stdev_map(fp_random[:, :-7])),
145
  axis=1)
146
  ]
147
 
 
306
  Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
307
 
308
  # Type Casting
309
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
310
  Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
311
 
312
  # Sorting
 
344
  Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
345
 
346
  # Type Casting
347
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
348
  Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
349
 
350
  # Sorting