Multichem commited on
Commit
05c8b0c
·
1 Parent(s): fe28b9b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +1398 -0
app.py ADDED
@@ -0,0 +1,1398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+
4
+ for name in dir():
5
+ if not name.startswith('_'):
6
+ del globals()[name]
7
+
8
+ import pulp
9
+ import numpy as np
10
+ import pandas as pd
11
+ import streamlit as st
12
+ import gspread
13
+ import time
14
+ import random
15
+ import scipy.stats
16
+ import os
17
+
18
+ @st.cache_resource
19
+ def init_conn():
20
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
21
+ "https://www.googleapis.com/auth/drive"]
22
+
23
+ credentials = {
24
+ "type": "service_account",
25
+ "project_id": "sheets-api-connect-378620",
26
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
27
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
28
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
29
+ "client_id": "106625872877651920064",
30
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
31
+ "token_uri": "https://oauth2.googleapis.com/token",
32
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
33
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
34
+ }
35
+
36
+ gc = gspread.service_account_from_dict(credentials)
37
+ return gc
38
+
39
+ gc = init_conn()
40
+
41
+ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
42
+ 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
43
+
44
+ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
45
+ '4x%': '{:.2%}','GPP%': '{:.2%}'}
46
+
47
+ freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
48
+
49
+ @st.cache_resource(ttl = 3600)
50
+ def set_slate_teams():
51
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
52
+ worksheet = sh.worksheet('Site_Info')
53
+ raw_display = pd.DataFrame(worksheet.get_all_records())
54
+
55
+ return raw_display
56
+
57
+ @st.cache_resource(ttl = 600)
58
+ def player_stat_table():
59
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
60
+ worksheet = sh.worksheet('Player_Projections')
61
+ raw_display = pd.DataFrame(worksheet.get_all_records())
62
+
63
+ return raw_display
64
+
65
+ @st.cache_resource(ttl = 600)
66
+ def load_dk_player_projections():
67
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
68
+ worksheet = sh.worksheet('DK_ROO')
69
+ load_display = pd.DataFrame(worksheet.get_all_records())
70
+ load_display.replace('', np.nan, inplace=True)
71
+ raw_display = load_display.dropna(subset=['Median'])
72
+ del load_display
73
+
74
+ return raw_display
75
+
76
+ @st.cache_resource(ttl = 600)
77
+ def load_fd_player_projections():
78
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
79
+ worksheet = sh.worksheet('FD_ROO')
80
+ load_display = pd.DataFrame(worksheet.get_all_records())
81
+ load_display.replace('', np.nan, inplace=True)
82
+ raw_display = load_display.dropna(subset=['Median'])
83
+ del load_display
84
+
85
+ return raw_display
86
+
87
+ @st.cache_resource(ttl = 3600)
88
+ def set_export_ids():
89
+ sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
90
+ worksheet = sh.worksheet('DK_ROO')
91
+ load_display = pd.DataFrame(worksheet.get_all_records())
92
+ load_display.replace('', np.nan, inplace=True)
93
+ raw_display = load_display.dropna(subset=['Median'])
94
+ dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
95
+
96
+ worksheet = sh.worksheet('FD_ROO')
97
+ load_display = pd.DataFrame(worksheet.get_all_records())
98
+ load_display.replace('', np.nan, inplace=True)
99
+ raw_display = load_display.dropna(subset=['Median'])
100
+ fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
101
+
102
+ del load_display
103
+ del raw_display
104
+
105
+ return dk_ids, fd_ids
106
+
107
+ @st.cache_data
108
+ def convert_df_to_csv(df):
109
+ return df.to_csv().encode('utf-8')
110
+
111
+ def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs):
112
+ RunsVar = 1
113
+ seed_depth_def = seed_depth1
114
+ Strength_var_def = Strength_var
115
+ strength_grow_def = strength_grow
116
+ Teams_used_def = Teams_used
117
+ Total_Runs_def = Total_Runs
118
+ while RunsVar <= seed_depth_def:
119
+ if RunsVar <= 3:
120
+ FieldStrength = Strength_var_def
121
+ RandomPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
122
+ FinalPortfolio = RandomPortfolio
123
+ FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
124
+ FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
125
+ maps_dict.update(maps_dict2)
126
+ del FinalPortfolio2
127
+ del maps_dict2
128
+ elif RunsVar > 3 and RunsVar <= 4:
129
+ FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
130
+ FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
131
+ FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
132
+ FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
133
+ FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
134
+ FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
135
+ maps_dict.update(maps_dict3)
136
+ maps_dict.update(maps_dict4)
137
+ del FinalPortfolio3
138
+ del maps_dict3
139
+ del FinalPortfolio4
140
+ del maps_dict4
141
+ elif RunsVar > 4:
142
+ FieldStrength = 1
143
+ FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
144
+ FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
145
+ FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
146
+ FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
147
+ FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
148
+ maps_dict.update(maps_dict3)
149
+ maps_dict.update(maps_dict4)
150
+ del FinalPortfolio3
151
+ del maps_dict3
152
+ del FinalPortfolio4
153
+ del maps_dict4
154
+ RunsVar += 1
155
+
156
+ return FinalPortfolio, maps_dict
157
+
158
+ def create_stack_options(player_data, wr_var):
159
+ merged_frame = pd.DataFrame(columns = ['QB', 'Player'])
160
+ data_raw = player_data.sort_values(by='Median', ascending=False)
161
+
162
+ for team in data_raw['Team'].unique():
163
+ data_split = data_raw.loc[data_raw['Team'] == team]
164
+ qb_frame = data_split.loc[data_split['Position'] == 'QB'].reset_index()
165
+ wr_frame = data_split.loc[data_split['Position'] == 'WR'].iloc[wr_var-1:wr_var]
166
+ wr_frame['QB'] = qb_frame['Player'][0]
167
+ merge_slice = wr_frame[['QB', 'Player']]
168
+ merged_frame = pd.concat([merged_frame, merge_slice])
169
+ merged_frame = merged_frame.reset_index()
170
+ correl_dict = dict(zip(merged_frame.QB, merged_frame.Player))
171
+
172
+ del merged_frame
173
+ del data_raw
174
+
175
+ return correl_dict
176
+
177
+ def create_overall_dfs(pos_players, table_name, dict_name, pos):
178
+ if pos == "FLEX":
179
+ pos_players = pos_players.sort_values(by='Value', ascending=False)
180
+ table_name_raw = pos_players.reset_index(drop=True)
181
+ overall_table_name = table_name_raw.head(round(len(table_name_raw)))
182
+ overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
183
+ overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
184
+
185
+ del pos_players
186
+ del table_name_raw
187
+ elif pos != "FLEX":
188
+ table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
189
+ overall_table_name = table_name_raw.head(round(len(table_name_raw)))
190
+ overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
191
+ overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
192
+
193
+ del pos_players
194
+ del table_name_raw
195
+
196
+ return overall_table_name, overall_dict_name
197
+
198
+
199
+ def get_overall_merged_df():
200
+ ref_dict = {
201
+ 'pos':['RB', 'WR', 'TE', 'FLEX'],
202
+ 'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
203
+ 'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
204
+ }
205
+
206
+ for i in range(0,4):
207
+ ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
208
+ create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
209
+
210
+ df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
211
+
212
+ return df_out, ref_dict
213
+
214
+ def calculate_range_var(count, min_val, FieldStrength, field_growth):
215
+ var = round(len(count[0]) * FieldStrength)
216
+ var = max(var, min_val)
217
+ var += round(field_growth)
218
+ return min(var, len(count[0]))
219
+
220
+ def create_random_portfolio(Total_Sample_Size, raw_baselines):
221
+
222
+ O_merge, full_pos_player_dict = get_overall_merged_df()
223
+ max_var = len(raw_baselines[raw_baselines['Position'] == 'QB'])
224
+
225
+ field_growth_rounded = round(field_growth)
226
+ ranges_dict = {}
227
+
228
+ # Calculate ranges
229
+ for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 30, 10], ['RB', 'WR', 'TE', 'FLEX']):
230
+ count = create_overall_dfs(pos_players, df, dict_val, key)
231
+ ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
232
+
233
+ ranges_dict['qb_range'] = round(max_var / 2)
234
+ ranges_dict['dst_range'] = round(max_var / 2)
235
+ # Generate unique ranges
236
+ # for key, value in ranges_dict.items():
237
+ # ranges_dict[f"{key}_Uniques"] = list(range(0, value, 1))
238
+
239
+ # Generate random portfolios
240
+ rng = np.random.default_rng()
241
+ total_elements = [1, 2, 3, 1, 1, 1]
242
+ keys = ['qb', 'rb', 'wr', 'te', 'flex', 'dst']
243
+
244
+ all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
245
+ RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
246
+ RandomPortfolio['User/Field'] = 0
247
+
248
+ del O_merge
249
+
250
+ return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
251
+
252
+ def get_correlated_portfolio_for_sim(Total_Sample_Size):
253
+
254
+ sizesplit = round(Total_Sample_Size * sharp_split)
255
+
256
+ RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
257
+ stack_num = random.randint(1, 3)
258
+ stacking_dict = create_stack_options(raw_baselines, stack_num)
259
+
260
+ # # Create a dictionary for mapping positions to their corresponding dictionaries
261
+ # dict_map = {
262
+ # 'QB': qb_dict,
263
+ # 'RB1': full_pos_player_dict['pos_dicts'][0],
264
+ # 'RB2': full_pos_player_dict['pos_dicts'][0],
265
+ # 'WR1': full_pos_player_dict['pos_dicts'][1],
266
+ # 'WR2': full_pos_player_dict['pos_dicts'][1],
267
+ # 'WR3': full_pos_player_dict['pos_dicts'][1],
268
+ # 'TE': full_pos_player_dict['pos_dicts'][2],
269
+ # 'FLEX': full_pos_player_dict['pos_dicts'][3],
270
+ # 'DST': def_dict
271
+ # }
272
+
273
+ # # Apply mapping for each position
274
+ # for pos, mapping in dict_map.items():
275
+ # RandomPortfolio[pos] = RandomPortfolio[pos].map(mapping).astype("string[pyarrow]")
276
+
277
+ # # This part appears to be for filtering. Consider if it can be optimized depending on the data characteristics
278
+ # RandomPortfolio['plyr_list'] = RandomPortfolio.values.tolist()
279
+ # RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
280
+ # RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).reset_index(drop=True)
281
+
282
+ RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
283
+ RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
284
+ RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
285
+ RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
286
+ RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
287
+ RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
288
+ RandomPortfolio['TE'] = pd.Series(list(RandomPortfolio['TE'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
289
+ RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
290
+ RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
291
+ RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
292
+ RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
293
+ RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
294
+ reset_index(drop=True)
295
+
296
+ del sizesplit
297
+ del full_pos_player_dict
298
+ del ranges_dict
299
+ del stack_num
300
+ del stacking_dict
301
+
302
+
303
+
304
+ RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
305
+ RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
306
+ RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
307
+ RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
308
+ RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
309
+ RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
310
+ RandomPortfolio['TEs'] = RandomPortfolio['TE'].map(maps_dict['Salary_map']).astype(np.int32)
311
+ RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
312
+ RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
313
+
314
+ RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
315
+ RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
316
+ RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
317
+ RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
318
+ RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
319
+ RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
320
+ RandomPortfolio['TEp'] = RandomPortfolio['TE'].map(maps_dict['Projection_map']).astype(np.float16)
321
+ RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
322
+ RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
323
+
324
+ RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
325
+ RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
326
+ RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
327
+ RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
328
+ RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
329
+ RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
330
+ RandomPortfolio['TEo'] = RandomPortfolio['TE'].map(maps_dict['Own_map']).astype(np.float16)
331
+ RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
332
+ RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
333
+
334
+ RandomPortArray = RandomPortfolio.to_numpy()
335
+ del RandomPortfolio
336
+
337
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
338
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
339
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,28:37].astype(np.double))]
340
+
341
+ RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
342
+ RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
343
+ RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
344
+ del RandomPortArray
345
+ del RandomPortArrayOut
346
+
347
+ if insert_port == 1:
348
+ CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
349
+ CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
350
+ CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
351
+ CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
352
+ CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
353
+ CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
354
+ CleanPortfolio['TE'].map(maps_dict['Salary_map']),
355
+ CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
356
+ CleanPortfolio['DST'].map(maps_dict['Salary_map'])
357
+ ]).astype(np.int16)
358
+ if insert_port == 1:
359
+ CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
360
+ CleanPortfolio['RB1'].map(up_dict['Projection_map']),
361
+ CleanPortfolio['RB2'].map(up_dict['Projection_map']),
362
+ CleanPortfolio['WR1'].map(up_dict['Projection_map']),
363
+ CleanPortfolio['WR2'].map(up_dict['Projection_map']),
364
+ CleanPortfolio['WR3'].map(up_dict['Projection_map']),
365
+ CleanPortfolio['TE'].map(up_dict['Projection_map']),
366
+ CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
367
+ CleanPortfolio['DST'].map(up_dict['Projection_map'])
368
+ ]).astype(np.float16)
369
+ if insert_port == 1:
370
+ CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
371
+ CleanPortfolio['RB1'].map(maps_dict['Own_map']),
372
+ CleanPortfolio['RB2'].map(maps_dict['Own_map']),
373
+ CleanPortfolio['WR1'].map(maps_dict['Own_map']),
374
+ CleanPortfolio['WR2'].map(maps_dict['Own_map']),
375
+ CleanPortfolio['WR3'].map(maps_dict['Own_map']),
376
+ CleanPortfolio['TE'].map(maps_dict['Own_map']),
377
+ CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
378
+ CleanPortfolio['DST'].map(maps_dict['Own_map'])
379
+ ]).astype(np.float16)
380
+
381
+ if site_var1 == 'Draftkings':
382
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
383
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 49500 - (FieldStrength * 1000)].reset_index(drop=True)
384
+ elif site_var1 == 'Fanduel':
385
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
386
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 59500 - (FieldStrength * 1000)].reset_index(drop=True)
387
+
388
+ RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
389
+
390
+ RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
391
+
392
+ return RandomPortfolio, maps_dict
393
+
394
+ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
395
+
396
+ sizesplit = round(Total_Sample_Size * (1-sharp_split))
397
+
398
+ RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
399
+
400
+ RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
401
+ RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
402
+ RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
403
+ RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
404
+ RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
405
+ RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
406
+ RandomPortfolio['TE'] = pd.Series(list(RandomPortfolio['TE'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
407
+ RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
408
+ RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
409
+ RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
410
+ RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
411
+ RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
412
+ reset_index(drop=True)
413
+
414
+ del sizesplit
415
+ del full_pos_player_dict
416
+ del ranges_dict
417
+
418
+ RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
419
+ RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
420
+ RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
421
+ RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
422
+ RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
423
+ RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
424
+ RandomPortfolio['TEs'] = RandomPortfolio['TE'].map(maps_dict['Salary_map']).astype(np.int32)
425
+ RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
426
+ RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
427
+
428
+ RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
429
+ RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
430
+ RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
431
+ RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
432
+ RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
433
+ RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
434
+ RandomPortfolio['TEp'] = RandomPortfolio['TE'].map(maps_dict['Projection_map']).astype(np.float16)
435
+ RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
436
+ RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
437
+
438
+ RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
439
+ RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
440
+ RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
441
+ RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
442
+ RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
443
+ RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
444
+ RandomPortfolio['TEo'] = RandomPortfolio['TE'].map(maps_dict['Own_map']).astype(np.float16)
445
+ RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
446
+ RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
447
+
448
+ RandomPortArray = RandomPortfolio.to_numpy()
449
+ del RandomPortfolio
450
+
451
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
452
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
453
+ RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,28:37].astype(np.double))]
454
+
455
+ RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
456
+ RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
457
+ RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
458
+ del RandomPortArray
459
+ del RandomPortArrayOut
460
+ # st.table(RandomPortfolioDF.head(50))
461
+
462
+ if insert_port == 1:
463
+ CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
464
+ CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
465
+ CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
466
+ CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
467
+ CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
468
+ CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
469
+ CleanPortfolio['TE'].map(maps_dict['Salary_map']),
470
+ CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
471
+ CleanPortfolio['DST'].map(maps_dict['Salary_map'])
472
+ ]).astype(np.int16)
473
+ if insert_port == 1:
474
+ CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
475
+ CleanPortfolio['RB1'].map(up_dict['Projection_map']),
476
+ CleanPortfolio['RB2'].map(up_dict['Projection_map']),
477
+ CleanPortfolio['WR1'].map(up_dict['Projection_map']),
478
+ CleanPortfolio['WR2'].map(up_dict['Projection_map']),
479
+ CleanPortfolio['WR3'].map(up_dict['Projection_map']),
480
+ CleanPortfolio['TE'].map(up_dict['Projection_map']),
481
+ CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
482
+ CleanPortfolio['DST'].map(up_dict['Projection_map'])
483
+ ]).astype(np.float16)
484
+ if insert_port == 1:
485
+ CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
486
+ CleanPortfolio['RB1'].map(maps_dict['Own_map']),
487
+ CleanPortfolio['RB2'].map(maps_dict['Own_map']),
488
+ CleanPortfolio['WR1'].map(maps_dict['Own_map']),
489
+ CleanPortfolio['WR2'].map(maps_dict['Own_map']),
490
+ CleanPortfolio['WR3'].map(maps_dict['Own_map']),
491
+ CleanPortfolio['TE'].map(maps_dict['Own_map']),
492
+ CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
493
+ CleanPortfolio['DST'].map(maps_dict['Own_map'])
494
+ ]).astype(np.float16)
495
+
496
+ if site_var1 == 'Draftkings':
497
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
498
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 49500 - (FieldStrength * 1000)].reset_index(drop=True)
499
+ elif site_var1 == 'Fanduel':
500
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
501
+ RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= 59500 - (FieldStrength * 1000)].reset_index(drop=True)
502
+
503
+ RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
504
+
505
+ RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
506
+
507
+ return RandomPortfolio, maps_dict
508
+
509
+ player_stats = player_stat_table()
510
+ dk_roo_raw = load_dk_player_projections()
511
+ fd_roo_raw = load_fd_player_projections()
512
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
513
+ site_slates = set_slate_teams()
514
+ dkid_dict, fdid_dict = set_export_ids()
515
+
516
+ static_exposure = pd.DataFrame(columns=['Player', 'count'])
517
+ overall_exposure = pd.DataFrame(columns=['Player', 'count'])
518
+
519
+ tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
520
+
521
+ with tab1:
522
+ with st.container():
523
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
524
+ col1, col2 = st.columns([3, 3])
525
+
526
+ with col1:
527
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
528
+
529
+ if proj_file is not None:
530
+ try:
531
+ proj_dataframe = pd.read_csv(proj_file)
532
+ proj_dataframe = proj_dataframe.dropna(subset='Median')
533
+ proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
534
+ try:
535
+ proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
536
+ except:
537
+ pass
538
+
539
+ except:
540
+ proj_dataframe = pd.read_excel(proj_file)
541
+ proj_dataframe = proj_dataframe.dropna(subset='Median')
542
+ proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
543
+ try:
544
+ proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
545
+ except:
546
+ pass
547
+ st.table(proj_dataframe.head(10))
548
+ player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
549
+ player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
550
+ player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
551
+ player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
552
+
553
+ with col2:
554
+ portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
555
+
556
+ if portfolio_file is not None:
557
+ try:
558
+ portfolio_dataframe = pd.read_csv(portfolio_file)
559
+
560
+ except:
561
+ portfolio_dataframe = pd.read_excel(portfolio_file)
562
+
563
+ try:
564
+ try:
565
+ portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
566
+ split_portfolio = portfolio_dataframe
567
+ split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
568
+ split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
569
+ split_portfolio[['RB2', 'RB2_ID']] = split_portfolio.RB2.str.split("(", n=1, expand = True)
570
+ split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
571
+ split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
572
+ split_portfolio[['WR3', 'WR3_ID']] = split_portfolio.WR3.str.split("(", n=1, expand = True)
573
+ split_portfolio[['TE', 'TE_ID']] = split_portfolio.TE.str.split("(", n=1, expand = True)
574
+ split_portfolio[['FLEX', 'FLEX_ID']] = split_portfolio.FLEX.str.split("(", n=1, expand = True)
575
+ split_portfolio[['DST', 'DST_ID']] = split_portfolio.DST.str.split("(", n=1, expand = True)
576
+
577
+ split_portfolio['QB'] = split_portfolio['QB'].str.strip()
578
+ split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
579
+ split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
580
+ split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
581
+ split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
582
+ split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
583
+ split_portfolio['TE'] = split_portfolio['TE'].str.strip()
584
+ split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
585
+ split_portfolio['DST'] = split_portfolio['DST'].str.strip()
586
+
587
+ split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
588
+ split_portfolio['RB1'].map(player_salary_dict),
589
+ split_portfolio['RB2'].map(player_salary_dict),
590
+ split_portfolio['WR1'].map(player_salary_dict),
591
+ split_portfolio['WR2'].map(player_salary_dict),
592
+ split_portfolio['WR3'].map(player_salary_dict),
593
+ split_portfolio['TE'].map(player_salary_dict),
594
+ split_portfolio['FLEX'].map(player_salary_dict),
595
+ split_portfolio['DST'].map(player_salary_dict)])
596
+
597
+ split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
598
+ split_portfolio['RB1'].map(player_proj_dict),
599
+ split_portfolio['RB2'].map(player_proj_dict),
600
+ split_portfolio['WR1'].map(player_proj_dict),
601
+ split_portfolio['WR2'].map(player_proj_dict),
602
+ split_portfolio['WR3'].map(player_proj_dict),
603
+ split_portfolio['TE'].map(player_proj_dict),
604
+ split_portfolio['FLEX'].map(player_proj_dict),
605
+ split_portfolio['DST'].map(player_proj_dict)])
606
+
607
+ split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
608
+ split_portfolio['RB1'].map(player_own_dict),
609
+ split_portfolio['RB2'].map(player_own_dict),
610
+ split_portfolio['WR1'].map(player_own_dict),
611
+ split_portfolio['WR2'].map(player_own_dict),
612
+ split_portfolio['WR3'].map(player_own_dict),
613
+ split_portfolio['TE'].map(player_own_dict),
614
+ split_portfolio['FLEX'].map(player_own_dict),
615
+ split_portfolio['DST'].map(player_own_dict)])
616
+
617
+ split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
618
+ split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
619
+ split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
620
+ split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
621
+ split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
622
+ split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
623
+ split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
624
+ split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
625
+ split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
626
+
627
+ split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
628
+ 'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
629
+
630
+ split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
631
+ split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
632
+ split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
633
+
634
+
635
+ except:
636
+ portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
637
+
638
+ split_portfolio = portfolio_dataframe
639
+ split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
640
+ split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
641
+ split_portfolio[['RB2_ID', 'RB2']] = split_portfolio.RB2.str.split(":", n=1, expand = True)
642
+ split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
643
+ split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
644
+ split_portfolio[['WR3_ID', 'WR3']] = split_portfolio.WR3.str.split(":", n=1, expand = True)
645
+ split_portfolio[['TE_ID', 'TE']] = split_portfolio.TE.str.split(":", n=1, expand = True)
646
+ split_portfolio[['FLEX_ID', 'FLEX']] = split_portfolio.FLEX.str.split(":", n=1, expand = True)
647
+ split_portfolio[['DST_ID', 'DST']] = split_portfolio.DST.str.split(":", n=1, expand = True)
648
+
649
+ split_portfolio['QB'] = split_portfolio['QB'].str.strip()
650
+ split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
651
+ split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
652
+ split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
653
+ split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
654
+ split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
655
+ split_portfolio['TE'] = split_portfolio['TE'].str.strip()
656
+ split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
657
+ split_portfolio['DST'] = split_portfolio['DST'].str.strip()
658
+
659
+ split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
660
+ split_portfolio['RB1'].map(player_salary_dict),
661
+ split_portfolio['RB2'].map(player_salary_dict),
662
+ split_portfolio['WR1'].map(player_salary_dict),
663
+ split_portfolio['WR2'].map(player_salary_dict),
664
+ split_portfolio['WR3'].map(player_salary_dict),
665
+ split_portfolio['TE'].map(player_salary_dict),
666
+ split_portfolio['FLEX'].map(player_salary_dict),
667
+ split_portfolio['DST'].map(player_salary_dict)])
668
+
669
+ split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
670
+ split_portfolio['RB1'].map(player_proj_dict),
671
+ split_portfolio['RB2'].map(player_proj_dict),
672
+ split_portfolio['WR1'].map(player_proj_dict),
673
+ split_portfolio['WR2'].map(player_proj_dict),
674
+ split_portfolio['WR3'].map(player_proj_dict),
675
+ split_portfolio['TE'].map(player_proj_dict),
676
+ split_portfolio['FLEX'].map(player_proj_dict),
677
+ split_portfolio['DST'].map(player_proj_dict)])
678
+
679
+ st.table(split_portfolio.head(10))
680
+ split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
681
+ split_portfolio['RB1'].map(player_own_dict),
682
+ split_portfolio['RB2'].map(player_own_dict),
683
+ split_portfolio['WR1'].map(player_own_dict),
684
+ split_portfolio['WR2'].map(player_own_dict),
685
+ split_portfolio['WR3'].map(player_own_dict),
686
+ split_portfolio['TE'].map(player_own_dict),
687
+ split_portfolio['FLEX'].map(player_own_dict),
688
+ split_portfolio['DST'].map(player_own_dict)])
689
+
690
+ split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
691
+ split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
692
+ split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
693
+ split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
694
+ split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
695
+ split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
696
+ split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
697
+ split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
698
+ split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
699
+
700
+ split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
701
+ 'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
702
+
703
+ split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
704
+ split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
705
+ split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
706
+
707
+ except:
708
+ split_portfolio = portfolio_dataframe
709
+
710
+ split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
711
+ split_portfolio['RB1'].map(player_salary_dict),
712
+ split_portfolio['RB2'].map(player_salary_dict),
713
+ split_portfolio['WR1'].map(player_salary_dict),
714
+ split_portfolio['WR2'].map(player_salary_dict),
715
+ split_portfolio['WR3'].map(player_salary_dict),
716
+ split_portfolio['TE'].map(player_salary_dict),
717
+ split_portfolio['FLEX'].map(player_salary_dict),
718
+ split_portfolio['DST'].map(player_salary_dict)])
719
+
720
+ split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
721
+ split_portfolio['RB1'].map(player_proj_dict),
722
+ split_portfolio['RB2'].map(player_proj_dict),
723
+ split_portfolio['WR1'].map(player_proj_dict),
724
+ split_portfolio['WR2'].map(player_proj_dict),
725
+ split_portfolio['WR3'].map(player_proj_dict),
726
+ split_portfolio['TE'].map(player_proj_dict),
727
+ split_portfolio['FLEX'].map(player_proj_dict),
728
+ split_portfolio['DST'].map(player_proj_dict)])
729
+
730
+ split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
731
+ split_portfolio['RB1'].map(player_own_dict),
732
+ split_portfolio['RB2'].map(player_own_dict),
733
+ split_portfolio['WR1'].map(player_own_dict),
734
+ split_portfolio['WR2'].map(player_own_dict),
735
+ split_portfolio['WR3'].map(player_own_dict),
736
+ split_portfolio['TE'].map(player_own_dict),
737
+ split_portfolio['FLEX'].map(player_own_dict),
738
+ split_portfolio['DST'].map(player_own_dict)])
739
+
740
+ split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
741
+ split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
742
+ split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
743
+ split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
744
+ split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
745
+ split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
746
+ split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
747
+ split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
748
+ split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
749
+
750
+ split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
751
+ 'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
752
+
753
+ split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
754
+ split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
755
+ split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
756
+
757
+ for player_cols in split_portfolio.iloc[:, :9]:
758
+ static_col_raw = split_portfolio[player_cols].value_counts()
759
+ static_col = static_col_raw.to_frame()
760
+ static_col.reset_index(inplace=True)
761
+ static_col.columns = ['Player', 'count']
762
+ static_exposure = pd.concat([static_exposure, static_col], ignore_index=True)
763
+ static_exposure['Exposure'] = static_exposure['count'] / len(split_portfolio)
764
+ static_exposure = static_exposure[['Player', 'Exposure']]
765
+
766
+ del player_salary_dict
767
+ del player_proj_dict
768
+ del player_own_dict
769
+ del player_team_dict
770
+ del static_col_raw
771
+ del static_col
772
+ with st.container():
773
+ col1, col2 = st.columns([3, 3])
774
+
775
+ if portfolio_file is not None:
776
+ with col1:
777
+ team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks'))
778
+ if team_split_var1 == 'Specific Stacks':
779
+ team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique())
780
+ elif team_split_var1 == 'Full Portfolio':
781
+ team_var1 = split_portfolio.Main_Stack.values.tolist()
782
+ with col2:
783
+ player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
784
+ if player_split_var1 == 'Specific Players':
785
+ find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique())
786
+ elif player_split_var1 == 'Full Players':
787
+ find_var1 = static_exposure.Player.values.tolist()
788
+
789
+ split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)]
790
+ if player_split_var1 == 'Specific Players':
791
+ split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False), find_var1).any(axis=1).all(axis=1)]
792
+ elif player_split_var1 == 'Full Players':
793
+ split_portfolio = split_portfolio
794
+
795
+ for player_cols in split_portfolio.iloc[:, :9]:
796
+ exposure_col_raw = split_portfolio[player_cols].value_counts()
797
+ exposure_col = exposure_col_raw.to_frame()
798
+ exposure_col.reset_index(inplace=True)
799
+ exposure_col.columns = ['Player', 'count']
800
+ overall_exposure = pd.concat([overall_exposure, exposure_col], ignore_index=True)
801
+ overall_exposure['Exposure'] = overall_exposure['count'] / len(split_portfolio)
802
+ overall_exposure = overall_exposure.groupby('Player').sum()
803
+ overall_exposure.reset_index(inplace=True)
804
+ overall_exposure = overall_exposure[['Player', 'Exposure']]
805
+ overall_exposure = overall_exposure.set_index('Player')
806
+ overall_exposure = overall_exposure.sort_values(by='Exposure', ascending=False)
807
+ overall_exposure['Exposure'] = overall_exposure['Exposure'].astype(float).map(lambda n: '{:.2%}'.format(n))
808
+
809
+ with st.container():
810
+ col1, col2 = st.columns([1, 6])
811
+
812
+ with col1:
813
+ if portfolio_file is not None:
814
+ st.header('Exposure View')
815
+ st.dataframe(overall_exposure)
816
+
817
+ with col2:
818
+ if portfolio_file is not None:
819
+ st.header('Portfolio View')
820
+ split_portfolio = split_portfolio.reset_index()
821
+ split_portfolio['Lineup'] = split_portfolio['index'] + 1
822
+ display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Main_Stack', 'Main_Stack_Size', 'Projection', 'Ownership']]
823
+ display_portfolio = display_portfolio.set_index('Lineup')
824
+ st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
825
+ del split_portfolio
826
+ del exposure_col_raw
827
+ del exposure_col
828
+ with tab2:
829
+ col1, col2 = st.columns([1, 7])
830
+ with col1:
831
+ st.info(t_stamp)
832
+ if st.button("Load/Reset Data", key='reset1'):
833
+ st.cache_data.clear()
834
+ dk_roo_raw = load_dk_player_projections()
835
+ fd_roo_raw = load_fd_player_projections()
836
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
837
+ site_slates = set_slate_teams()
838
+ dkid_dict, fdid_dict = set_export_ids()
839
+
840
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'))
841
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
842
+ if site_var1 == 'Draftkings':
843
+ if slate_var1 == 'User':
844
+ raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
845
+ elif slate_var1 != 'User':
846
+ raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
847
+ raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
848
+ elif site_var1 == 'Fanduel':
849
+ if slate_var1 == 'User':
850
+ raw_baselines = proj_dataframe
851
+ elif slate_var1 != 'User':
852
+ raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
853
+ raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
854
+ st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
855
+ insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
856
+ if insert_port1 == 'Yes':
857
+ insert_port = 1
858
+ elif insert_port1 == 'No':
859
+ insert_port = 0
860
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
861
+ if contest_var1 == 'Small':
862
+ Contest_Size = 1000
863
+ elif contest_var1 == 'Medium':
864
+ Contest_Size = 5000
865
+ elif contest_var1 == 'Large':
866
+ Contest_Size = 10000
867
+ linenum_var1 = 1000
868
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
869
+ if strength_var1 == 'Not Very':
870
+ sharp_split = .33
871
+ Strength_var = .50
872
+ scaling_var = 5
873
+ elif strength_var1 == 'Average':
874
+ sharp_split = .50
875
+ Strength_var = .25
876
+ scaling_var = 10
877
+ elif strength_var1 == 'Very':
878
+ sharp_split = .75
879
+ Strength_var = .01
880
+ scaling_var = 15
881
+
882
+ with col2:
883
+ if st.button("Simulate Contest"):
884
+ try:
885
+ del dst_freq
886
+ del flex_freq
887
+ del te_freq
888
+ del wr_freq
889
+ del rb_freq
890
+ del qb_freq
891
+ del player_freq
892
+ del Sim_Winner_Export
893
+ del Sim_Winner_Frame
894
+ except:
895
+ pass
896
+ with st.container():
897
+ st.write('Contest Simulation Starting')
898
+ seed_depth1 = 5
899
+ Total_Runs = 1000000
900
+ if Contest_Size <= 1000:
901
+ strength_grow = .01
902
+ elif Contest_Size > 1000 and Contest_Size <= 2500:
903
+ strength_grow = .025
904
+ elif Contest_Size > 2500 and Contest_Size <= 5000:
905
+ strength_grow = .05
906
+ elif Contest_Size > 5000 and Contest_Size <= 20000:
907
+ strength_grow = .075
908
+ elif Contest_Size > 20000:
909
+ strength_grow = .1
910
+
911
+ field_growth = 100 * strength_grow
912
+
913
+ Sort_function = 'Median'
914
+ if Sort_function == 'Median':
915
+ Sim_function = 'Projection'
916
+ elif Sort_function == 'Own':
917
+ Sim_function = 'Own'
918
+
919
+ if slate_var1 == 'User':
920
+ OwnFrame = proj_dataframe
921
+ if contest_var1 == 'Small':
922
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
923
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
924
+ OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
925
+ OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
926
+ if contest_var1 == 'Medium':
927
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
928
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
929
+ OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
930
+ OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
931
+ if contest_var1 == 'Large':
932
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
933
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
934
+ OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
935
+ OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
936
+ Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
937
+
938
+ del OwnFrame
939
+
940
+ elif slate_var1 != 'User':
941
+ initial_proj = raw_baselines
942
+ drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
943
+ OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
944
+ if contest_var1 == 'Small':
945
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
946
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
947
+ OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
948
+ OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
949
+ if contest_var1 == 'Medium':
950
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
951
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
952
+ OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
953
+ OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
954
+ if contest_var1 == 'Large':
955
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
956
+ OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
957
+ OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
958
+ OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
959
+ Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
960
+
961
+ del initial_proj
962
+ del drop_frame
963
+ del OwnFrame
964
+
965
+ if insert_port == 1:
966
+ UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
967
+ elif insert_port == 0:
968
+ UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
969
+
970
+ Overall_Proj.replace('', np.nan, inplace=True)
971
+ Overall_Proj = Overall_Proj.dropna(subset=['Median'])
972
+ Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
973
+ Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
974
+ Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
975
+ Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
976
+ Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
977
+
978
+ Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
979
+ Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
980
+ Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
981
+
982
+ Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
983
+ Teams_used = Teams_used.reset_index()
984
+ Teams_used['team_item'] = Teams_used['index'] + 1
985
+ Teams_used = Teams_used.drop(columns=['index'])
986
+ Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
987
+ Teams_used_dict = Teams_used_dictraw.to_dict()
988
+
989
+ del Teams_used_dictraw
990
+
991
+ team_list = Teams_used['Team'].to_list()
992
+ item_list = Teams_used['team_item'].to_list()
993
+
994
+ FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
995
+ FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
996
+
997
+ del FieldStrength_raw
998
+
999
+ if FieldStrength < 0:
1000
+ FieldStrength = Strength_var
1001
+ field_split = Strength_var
1002
+
1003
+ for checkVar in range(len(team_list)):
1004
+ Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
1005
+
1006
+ qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
1007
+ qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
1008
+ qbs_raw = qbs_raw.reset_index(drop=True)
1009
+ qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
1010
+
1011
+ qbs = qbs_raw.head(round(len(qbs_raw)))
1012
+ qbs = qbs.assign(Var = range(0,len(qbs)))
1013
+ qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
1014
+
1015
+ defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
1016
+ defs_raw.dropna(subset=['Median']).reset_index(drop=True)
1017
+ defs_raw = defs_raw.reset_index(drop=True)
1018
+ defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
1019
+
1020
+ defs = defs_raw.head(round(len(defs_raw)))
1021
+ defs = defs.assign(Var = range(0,len(defs)))
1022
+ def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
1023
+
1024
+ rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
1025
+ rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
1026
+ rbs_raw = rbs_raw.reset_index(drop=True)
1027
+ rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
1028
+
1029
+ wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
1030
+ wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
1031
+ wrs_raw = wrs_raw.reset_index(drop=True)
1032
+ wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
1033
+
1034
+ tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
1035
+ tes_raw.dropna(subset=['Median']).reset_index(drop=True)
1036
+ tes_raw = tes_raw.reset_index(drop=True)
1037
+ tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
1038
+
1039
+ pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
1040
+ pos_players.dropna(subset=['Median']).reset_index(drop=True)
1041
+ pos_players = pos_players.reset_index(drop=True)
1042
+
1043
+ del qbs_raw
1044
+ del defs_raw
1045
+ del rbs_raw
1046
+ del wrs_raw
1047
+ del tes_raw
1048
+
1049
+ if insert_port == 1:
1050
+ try:
1051
+ # Initialize an empty DataFrame for Raw Portfolio
1052
+ Raw_Portfolio = pd.DataFrame()
1053
+
1054
+ # Loop through each position and split the data accordingly
1055
+ positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
1056
+ for pos in positions:
1057
+ temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
1058
+ temp_df.columns = [pos, 'Drop']
1059
+ Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
1060
+
1061
+ # Select only necessary columns and strip white spaces
1062
+ CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
1063
+ CleanPortfolio.reset_index(inplace=True)
1064
+ CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
1065
+ CleanPortfolio.drop(columns=['index'], inplace=True)
1066
+
1067
+ CleanPortfolio.replace('', np.nan, inplace=True)
1068
+ CleanPortfolio.dropna(subset=['QB'], inplace=True)
1069
+
1070
+ # Create frequency table for players
1071
+ cleaport_players = pd.DataFrame(
1072
+ np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
1073
+ columns=['Player', 'Freq']
1074
+ ).sort_values('Freq', ascending=False).reset_index(drop=True)
1075
+ cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
1076
+
1077
+ # Merge and update nerf_frame
1078
+ nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
1079
+ for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
1080
+ nerf_frame[col] *= 0.90
1081
+ del Raw_Portfolio
1082
+ except:
1083
+ CleanPortfolio = UserPortfolio.reset_index()
1084
+ CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
1085
+ CleanPortfolio.drop(columns=['index'], inplace=True)
1086
+
1087
+ # Replace empty strings and drop rows with NaN in 'QB' column
1088
+ CleanPortfolio.replace('', np.nan, inplace=True)
1089
+ CleanPortfolio.dropna(subset=['QB'], inplace=True)
1090
+
1091
+ # Create frequency table for players
1092
+ cleaport_players = pd.DataFrame(
1093
+ np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
1094
+ columns=['Player', 'Freq']
1095
+ ).sort_values('Freq', ascending=False).reset_index(drop=True)
1096
+ cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
1097
+
1098
+ # Merge and update nerf_frame
1099
+ nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
1100
+ for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
1101
+ nerf_frame[col] *= 0.90
1102
+
1103
+ elif insert_port == 0:
1104
+ CleanPortfolio = UserPortfolio
1105
+ cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
1106
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1107
+ cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
1108
+ nerf_frame = Overall_Proj
1109
+
1110
+ ref_dict = {
1111
+ 'pos':['RB', 'WR', 'TE', 'FLEX'],
1112
+ 'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
1113
+ 'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
1114
+ }
1115
+
1116
+ maps_dict = {
1117
+ 'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
1118
+ 'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
1119
+ 'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
1120
+ 'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
1121
+ 'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
1122
+ 'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
1123
+ 'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
1124
+ 'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
1125
+ 'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
1126
+ }
1127
+
1128
+ up_dict = {
1129
+ 'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
1130
+ 'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
1131
+ 'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
1132
+ 'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
1133
+ 'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
1134
+ 'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
1135
+ 'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
1136
+ 'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
1137
+ 'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
1138
+ }
1139
+
1140
+ del cleaport_players
1141
+ del Overall_Proj
1142
+ del nerf_frame
1143
+
1144
+ st.write('Seed frame creation')
1145
+ FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
1146
+
1147
+ Sim_size = linenum_var1
1148
+ SimVar = 1
1149
+ Sim_Winners = []
1150
+ fp_array = FinalPortfolio.values
1151
+
1152
+ if insert_port == 1:
1153
+ up_array = CleanPortfolio.values
1154
+
1155
+ # Pre-vectorize functions
1156
+ vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
1157
+ vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
1158
+
1159
+ if insert_port == 1:
1160
+ vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
1161
+ vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
1162
+
1163
+ st.write('Simulating contest on frames')
1164
+
1165
+ while SimVar <= Sim_size:
1166
+ try:
1167
+ fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio), replace=False)]
1168
+
1169
+ sample_arrays1 = np.c_[
1170
+ fp_random,
1171
+ np.sum(np.random.normal(
1172
+ loc=vec_projection_map(fp_random[:, :-5]),
1173
+ scale=vec_stdev_map(fp_random[:, :-5])),
1174
+ axis=1)
1175
+ ]
1176
+
1177
+ if insert_port == 1:
1178
+ sample_arrays2 = np.c_[
1179
+ up_array,
1180
+ np.sum(np.random.normal(
1181
+ loc=vec_up_projection_map(up_array[:, :-5]),
1182
+ scale=vec_up_stdev_map(up_array[:, :-5])),
1183
+ axis=1)
1184
+ ]
1185
+ sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
1186
+ else:
1187
+ sample_arrays = sample_arrays1
1188
+
1189
+ final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
1190
+ best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
1191
+ Sim_Winners.append(best_lineup)
1192
+ SimVar += 1
1193
+
1194
+ except Exception as e:
1195
+ # Handle exceptions here but avoid using try-except for control flow
1196
+ print("Exception: ", e)
1197
+
1198
+
1199
+ # del smple_arrays
1200
+ # del smple_arrays1
1201
+ # del smple_arrays2
1202
+ # del final_array
1203
+ # del best_lineup
1204
+ st.write('Contest simulation complete')
1205
+ # Initial setup
1206
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
1207
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
1208
+
1209
+ # Type Casting
1210
+ type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
1211
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
1212
+
1213
+ # Sorting
1214
+ Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
1215
+
1216
+ # Data Copying
1217
+ Sim_Winner_Export = Sim_Winner_Frame.copy()
1218
+
1219
+ # Conditional Replacement
1220
+ columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
1221
+
1222
+ if site_var1 == 'Draftkings':
1223
+ replace_dict = dkid_dict
1224
+ elif site_var1 == 'Fanduel':
1225
+ replace_dict = fdid_dict
1226
+
1227
+ for col in columns_to_replace:
1228
+ Sim_Winner_Export[col].replace(replace_dict, inplace=True)
1229
+
1230
+
1231
+ player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
1232
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1233
+ player_freq['Freq'] = player_freq['Freq'].astype(int)
1234
+ player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
1235
+ player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
1236
+ player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
1237
+ player_freq['Exposure'] = player_freq['Freq']/(Sim_size)
1238
+ player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
1239
+ player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
1240
+ for checkVar in range(len(team_list)):
1241
+ player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
1242
+
1243
+ player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1244
+
1245
+ qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
1246
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1247
+ qb_freq['Freq'] = qb_freq['Freq'].astype(int)
1248
+ qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
1249
+ qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
1250
+ qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
1251
+ qb_freq['Exposure'] = qb_freq['Freq']/(Sim_size)
1252
+ qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
1253
+ qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
1254
+ for checkVar in range(len(team_list)):
1255
+ qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
1256
+
1257
+ qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1258
+
1259
+ rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
1260
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1261
+ rb_freq['Freq'] = rb_freq['Freq'].astype(int)
1262
+ rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
1263
+ rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
1264
+ rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
1265
+ rb_freq['Exposure'] = rb_freq['Freq']/Sim_size
1266
+ rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
1267
+ rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
1268
+ for checkVar in range(len(team_list)):
1269
+ rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
1270
+
1271
+ rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1272
+
1273
+ wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
1274
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1275
+ wr_freq['Freq'] = wr_freq['Freq'].astype(int)
1276
+ wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
1277
+ wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
1278
+ wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
1279
+ wr_freq['Exposure'] = wr_freq['Freq']/Sim_size
1280
+ wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
1281
+ wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
1282
+ for checkVar in range(len(team_list)):
1283
+ wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
1284
+
1285
+ wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1286
+
1287
+ te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
1288
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1289
+ te_freq['Freq'] = te_freq['Freq'].astype(int)
1290
+ te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
1291
+ te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
1292
+ te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
1293
+ te_freq['Exposure'] = te_freq['Freq']/Sim_size
1294
+ te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
1295
+ te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
1296
+ for checkVar in range(len(team_list)):
1297
+ te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
1298
+
1299
+ te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1300
+
1301
+ flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
1302
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1303
+ flex_freq['Freq'] = flex_freq['Freq'].astype(int)
1304
+ flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
1305
+ flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
1306
+ flex_freq['Proj Own'] = flex_freq['Player'].map(maps_dict['Own_map']) / 100
1307
+ flex_freq['Exposure'] = flex_freq['Freq']/Sim_size
1308
+ flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
1309
+ flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
1310
+ for checkVar in range(len(team_list)):
1311
+ flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
1312
+
1313
+ flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1314
+
1315
+ dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
1316
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1317
+ dst_freq['Freq'] = dst_freq['Freq'].astype(int)
1318
+ dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
1319
+ dst_freq['Salary'] = dst_freq['Player'].map(maps_dict['Salary_map'])
1320
+ dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
1321
+ dst_freq['Exposure'] = dst_freq['Freq']/Sim_size
1322
+ dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
1323
+ dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
1324
+ for checkVar in range(len(team_list)):
1325
+ dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1326
+
1327
+ dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1328
+
1329
+ with st.container():
1330
+ simulate_container = st.empty()
1331
+ st.dataframe(Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1332
+
1333
+ st.download_button(
1334
+ label="Export Tables",
1335
+ data=convert_df_to_csv(Sim_Winner_Export),
1336
+ file_name='NFL_consim_export.csv',
1337
+ mime='text/csv',
1338
+ )
1339
+
1340
+ with st.container():
1341
+ freq_container = st.empty()
1342
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1343
+ with tab1:
1344
+ st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1345
+ st.download_button(
1346
+ label="Export Exposures",
1347
+ data=convert_df_to_csv(player_freq),
1348
+ file_name='player_freq_export.csv',
1349
+ mime='text/csv',
1350
+ )
1351
+ with tab2:
1352
+ st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1353
+ st.download_button(
1354
+ label="Export Exposures",
1355
+ data=convert_df_to_csv(qb_freq),
1356
+ file_name='qb_freq_export.csv',
1357
+ mime='text/csv',
1358
+ )
1359
+ with tab3:
1360
+ st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1361
+ st.download_button(
1362
+ label="Export Exposures",
1363
+ data=convert_df_to_csv(rb_freq),
1364
+ file_name='rb_freq_export.csv',
1365
+ mime='text/csv',
1366
+ )
1367
+ with tab4:
1368
+ st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1369
+ st.download_button(
1370
+ label="Export Exposures",
1371
+ data=convert_df_to_csv(wr_freq),
1372
+ file_name='wr_freq_export.csv',
1373
+ mime='text/csv',
1374
+ )
1375
+ with tab5:
1376
+ st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1377
+ st.download_button(
1378
+ label="Export Exposures",
1379
+ data=convert_df_to_csv(te_freq),
1380
+ file_name='te_freq_export.csv',
1381
+ mime='text/csv',
1382
+ )
1383
+ with tab6:
1384
+ st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1385
+ st.download_button(
1386
+ label="Export Exposures",
1387
+ data=convert_df_to_csv(flex_freq),
1388
+ file_name='flex_freq_export.csv',
1389
+ mime='text/csv',
1390
+ )
1391
+ with tab7:
1392
+ st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1393
+ st.download_button(
1394
+ label="Export Exposures",
1395
+ data=convert_df_to_csv(dst_freq),
1396
+ file_name='dst_freq_export.csv',
1397
+ mime='text/csv',
1398
+ )