James McCool commited on
Commit
3963b80
·
1 Parent(s): 192168c

Refactor prop simulation interface: updated DataFrame columns to include 'Trending Over' and 'Trending Under', reorganized layout for better usability, and improved simulation logic for player props. Enhanced data handling for prop categories and added functionality for downloading projections.

Browse files
Files changed (1) hide show
  1. app.py +339 -326
app.py CHANGED
@@ -147,7 +147,7 @@ prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{
147
  all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_PASSING_COMPLETIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
148
  'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
149
  pick6_sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Completions', 'Rushing Yards', 'Receptions', 'Receiving Yards']
150
- sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
151
 
152
  tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Game Betting Model", 'Prop Market', "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
153
 
@@ -476,334 +476,347 @@ with tab7:
476
  non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
477
  team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
478
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
479
- col1, col2 = st.columns([1, 5])
480
-
481
- with col2:
482
- df_hold_container = st.empty()
483
- info_hold_container = st.empty()
484
- plot_hold_container = st.empty()
485
- export_container = st.empty()
486
-
487
- with col1:
488
- game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
489
- book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
490
- if book_select_var == 'ALL':
491
- book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
492
- else:
493
- book_selections = [book_select_var]
494
- if game_select_var == 'Aggregate':
495
- prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
496
- elif game_select_var == 'Pick6':
497
- prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
498
- book_selections = ['Pick6']
499
- st.download_button(
500
- label="Download Prop Source",
501
- data=convert_df_to_csv(prop_df),
502
- file_name='NFL_prop_source.csv',
503
- mime='text/csv',
504
- key='prop_source',
505
- )
506
- if game_select_var == 'Aggregate':
507
- prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
508
- 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS'])
509
- elif game_select_var == 'Pick6':
510
- prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs'])
511
-
512
- if st.button('Simulate Prop Category'):
513
- with col2:
514
-
515
- with df_hold_container.container():
516
- if prop_type_var == 'All Props':
517
- if game_select_var == 'Aggregate':
518
- prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
519
- sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
520
- 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
521
- elif game_select_var == 'Pick6':
522
- prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
523
- sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
524
-
525
- player_df = overall_stats.copy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526
 
527
- for prop in sim_vars:
528
-
529
- for books in book_selections:
530
- prop_df = prop_df_raw[prop_df_raw['book'] == books]
531
- prop_df = prop_df[prop_df['prop_type'] == prop]
532
- prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
533
- prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
534
- prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
535
- prop_df['Over'] = 1 / prop_df['over_line']
536
- prop_df['Under'] = 1 / prop_df['under_line']
537
-
538
- prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
539
- prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
540
- book_dict = dict(zip(prop_df.Player, prop_df.book))
541
- over_dict = dict(zip(prop_df.Player, prop_df.Over))
542
- under_dict = dict(zip(prop_df.Player, prop_df.Under))
543
-
544
- player_df['book'] = player_df['Player'].map(book_dict)
545
- player_df['Prop'] = player_df['Player'].map(prop_dict)
546
- player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
547
-
548
- df = player_df.reset_index(drop=True)
549
-
550
- team_dict = dict(zip(df.Player, df.Team))
551
-
552
- total_sims = 1000
553
-
554
- df.replace("", 0, inplace=True)
555
-
556
- if prop == "NFL_GAME_PLAYER_PASSING_YARDS" or prop == "Passing Yards":
557
- df['Median'] = df['pass_yards']
558
- elif prop == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop == "Rushing Yards":
559
- df['Median'] = df['rush_yards']
560
- elif prop == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop == "Passing Attempts":
561
- df['Median'] = df['pass_att']
562
- elif prop == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop == "Passing TDs":
563
- df['Median'] = df['pass_tds']
564
- elif prop == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop == "Rushing Attempts":
565
- df['Median'] = df['rush_att']
566
- elif prop == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop == "Receptions":
567
- df['Median'] = df['rec']
568
- elif prop == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop == "Receiving Yards":
569
- df['Median'] = df['rec_yards']
570
- elif prop == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop == "Receiving TDs":
571
- df['Median'] = df['rec_tds']
572
- elif prop == "Rush + Rec Yards":
573
- df['Median'] = df['rush_yards'] + df['rec_yards']
574
- elif prop == "Rush + Rec TDs":
575
- df['Median'] = df['rush_tds'] + df['rec_tds']
576
-
577
- flex_file = df.copy()
578
- flex_file['Floor'] = flex_file['Median'] * .25
579
- flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
580
- flex_file['STD'] = flex_file['Median'] / 4
581
- flex_file['Prop'] = flex_file['Player'].map(prop_dict)
582
- flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
583
-
584
- hold_file = flex_file.copy()
585
- overall_file = flex_file.copy()
586
- prop_file = flex_file.copy()
587
-
588
- overall_players = overall_file[['Player']]
589
-
590
- for x in range(0,total_sims):
591
- prop_file[x] = prop_file['Prop']
592
-
593
- prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
594
-
595
- for x in range(0,total_sims):
596
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
597
-
598
- overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
599
-
600
- players_only = hold_file[['Player']]
601
-
602
- player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
603
-
604
- prop_check = (overall_file - prop_file)
605
-
606
- players_only['Mean_Outcome'] = overall_file.mean(axis=1)
607
- players_only['Book'] = players_only['Player'].map(book_dict)
608
- players_only['Prop'] = players_only['Player'].map(prop_dict)
609
- players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
610
- players_only['10%'] = overall_file.quantile(0.1, axis=1)
611
- players_only['90%'] = overall_file.quantile(0.9, axis=1)
612
- players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
613
- players_only['Imp Over'] = players_only['Player'].map(over_dict)
614
- players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
615
- players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
616
- players_only['Imp Under'] = players_only['Player'].map(under_dict)
617
- players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
618
- players_only['Prop_avg'] = players_only['Prop'].mean() / 100
619
- players_only['prop_threshold'] = .10
620
- players_only = players_only[players_only['Mean_Outcome'] > 0]
621
- players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
622
- players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
623
- players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
624
- players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
625
- players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
626
- players_only['Edge'] = players_only['Bet_check']
627
- players_only['Prop Type'] = prop
628
-
629
- players_only['Player'] = hold_file[['Player']]
630
- players_only['Team'] = players_only['Player'].map(team_dict)
631
-
632
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
633
- sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
634
-
635
- final_outcomes = sim_all_hold
636
- st.write(f'finished {prop} for {books}')
637
 
638
- elif prop_type_var != 'All Props':
639
 
640
- player_df = overall_stats.copy()
 
641
 
642
- if game_select_var == 'Aggregate':
643
- prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
644
- elif game_select_var == 'Pick6':
645
- prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
646
-
647
- for books in book_selections:
648
- prop_df = prop_df_raw[prop_df_raw['book'] == books]
649
-
650
- if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS":
651
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
652
- elif prop_type_var == "Passing Yards":
653
- prop_df = prop_df[prop_df['prop_type'] == 'Passing Yards']
654
- elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS":
655
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
656
- elif prop_type_var == "Rushing Yards":
657
- prop_df = prop_df[prop_df['prop_type'] == 'Rushing Yards']
658
- elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS":
659
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
660
- elif prop_type_var == "Passing Attempts":
661
- prop_df = prop_df[prop_df['prop_type'] == 'Passing Attempts']
662
- elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS":
663
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS']
664
- elif prop_type_var == "Passing TDs":
665
- prop_df = prop_df[prop_df['prop_type'] == 'Passing TDs']
666
- elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS":
667
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
668
- elif prop_type_var == "Rushing Attempts":
669
- prop_df = prop_df[prop_df['prop_type'] == 'Rushing Attempts']
670
- elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS":
671
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
672
- elif prop_type_var == "Receptions":
673
- prop_df = prop_df[prop_df['prop_type'] == 'Receptions']
674
- elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS":
675
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
676
- elif prop_type_var == "Receiving Yards":
677
- prop_df = prop_df[prop_df['prop_type'] == 'Receiving Yards']
678
- elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS":
679
- prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
680
- elif prop_type_var == "Receiving TDs":
681
- prop_df = prop_df[prop_df['prop_type'] == 'Receiving TDs']
682
- elif prop_type_var == "Rush + Rec Yards":
683
- prop_df = prop_df[prop_df['prop_type'] == 'Rush + Rec Yards']
684
- elif prop_type_var == "Rush + Rec TDs":
685
- prop_df = prop_df[prop_df['prop_type'] == 'Rush + Rec TDs']
686
-
687
- prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
688
- prop_df = prop_df.rename(columns={"over_prop": "Prop"})
689
- prop_df['Over'] = 1 / prop_df['over_line']
690
- prop_df['Under'] = 1 / prop_df['under_line']
691
-
692
- prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
693
- prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
694
- book_dict = dict(zip(prop_df.Player, prop_df.book))
695
- over_dict = dict(zip(prop_df.Player, prop_df.Over))
696
- under_dict = dict(zip(prop_df.Player, prop_df.Under))
697
-
698
- player_df['book'] = player_df['Player'].map(book_dict)
699
- player_df['Prop'] = player_df['Player'].map(prop_dict)
700
- player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
701
-
702
- df = player_df.reset_index(drop=True)
703
-
704
- team_dict = dict(zip(df.Player, df.Team))
705
-
706
- total_sims = 1000
707
-
708
- df.replace("", 0, inplace=True)
709
-
710
- if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS" or prop_type_var == "Passing Yards":
711
- df['Median'] = df['pass_yards']
712
- elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop_type_var == "Rushing Yards":
713
- df['Median'] = df['rush_yards']
714
- elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop_type_var == "Passing Attempts":
715
- df['Median'] = df['pass_att']
716
- elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop_type_var == "Passing TDs":
717
- df['Median'] = df['pass_tds']
718
- elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop_type_var == "Rushing Attempts":
719
- df['Median'] = df['rush_att']
720
- elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop_type_var == "Receptions":
721
- df['Median'] = df['rec']
722
- elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop_type_var == "Receiving Yards":
723
- df['Median'] = df['rec_yards']
724
- elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop_type_var == "Receiving TDs":
725
- df['Median'] = df['rec_tds']
726
- elif prop_type_var == "Rush + Rec Yards":
727
- df['Median'] = df['rush_yards'] + df['rec_yards']
728
- elif prop_type_var == "Rush + Rec TDs":
729
- df['Median'] = df['rush_tds'] + df['rec_tds']
730
-
731
- flex_file = df.copy()
732
- flex_file['Floor'] = flex_file['Median'] * .25
733
- flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
734
- flex_file['STD'] = flex_file['Median'] / 4
735
- flex_file['Prop'] = flex_file['Player'].map(prop_dict)
736
- flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
737
-
738
- hold_file = flex_file.copy()
739
- overall_file = flex_file.copy()
740
- prop_file = flex_file.copy()
741
-
742
- overall_players = overall_file[['Player']]
743
-
744
- for x in range(0,total_sims):
745
- prop_file[x] = prop_file['Prop']
746
-
747
- prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
748
-
749
- for x in range(0,total_sims):
750
- overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
751
-
752
- overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
753
-
754
- players_only = hold_file[['Player']]
755
-
756
- player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
757
-
758
- prop_check = (overall_file - prop_file)
759
-
760
- players_only['Mean_Outcome'] = overall_file.mean(axis=1)
761
- players_only['Book'] = players_only['Player'].map(book_dict)
762
- players_only['Prop'] = players_only['Player'].map(prop_dict)
763
- players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
764
- players_only['10%'] = overall_file.quantile(0.1, axis=1)
765
- players_only['90%'] = overall_file.quantile(0.9, axis=1)
766
- players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
767
- players_only['Imp Over'] = players_only['Player'].map(over_dict)
768
- players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
769
- players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
770
- players_only['Imp Under'] = players_only['Player'].map(under_dict)
771
- players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
772
- players_only['Prop_avg'] = players_only['Prop'].mean() / 100
773
- players_only['prop_threshold'] = .10
774
- players_only = players_only[players_only['Mean_Outcome'] > 0]
775
- players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
776
- players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
777
- players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
778
- players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
779
- players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
780
- players_only['Edge'] = players_only['Bet_check']
781
- players_only['Prop Type'] = prop_type_var
782
-
783
- players_only['Player'] = hold_file[['Player']]
784
- players_only['Team'] = players_only['Player'].map(team_dict)
785
-
786
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
787
- sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
788
-
789
- final_outcomes = sim_all_hold
790
- st.write(f'finished {prop_type_var} for {books}')
791
-
792
- final_outcomes = final_outcomes.dropna()
793
- if game_select_var == 'Pick6':
794
- final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
795
- final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
796
 
797
- with df_hold_container:
798
- df_hold_container = st.empty()
799
- st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
800
- with export_container:
801
- export_container = st.empty()
802
- st.download_button(
803
- label="Export Projections",
804
- data=convert_df_to_csv(final_outcomes),
805
- file_name='NFL_prop_proj.csv',
806
- mime='text/csv',
807
- key='prop_proj',
808
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_PASSING_COMPLETIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
148
  'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
149
  pick6_sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Completions', 'Rushing Yards', 'Receptions', 'Receiving Yards']
150
+ sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
151
 
152
  tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Game Betting Model", 'Prop Market', "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
153
 
 
476
  non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
477
  team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
478
  t_stamp = f"Last Update: " + str(timestamp) + f" CST"
479
+
480
+ settings_container = st.empty()
481
+ df_hold_container = st.empty()
482
+ export_container = st.empty()
483
+
484
+ with settings_container.container():
485
+ col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
486
+ with col1:
487
+ game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
488
+ with col2:
489
+ book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
490
+ if book_select_var == 'ALL':
491
+ book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
492
+ else:
493
+ book_selections = [book_select_var]
494
+ if game_select_var == 'Aggregate':
495
+ prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
496
+ elif game_select_var == 'Pick6':
497
+ prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
498
+ book_selections = ['Pick6']
499
+ with col3:
500
+ if game_select_var == 'Aggregate':
501
+ prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
502
+ 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS'])
503
+ elif game_select_var == 'Pick6':
504
+ prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs'])
505
+ with col4:
506
+ st.download_button(
507
+ label="Download Prop Source",
508
+ data=convert_df_to_csv(prop_df),
509
+ file_name='NFL_prop_source.csv',
510
+ mime='text/csv',
511
+ key='prop_source',
512
+ )
513
+
514
+ if st.button('Simulate Prop Category'):
515
+
516
+ with df_hold_container.container():
517
+ if prop_type_var == 'All Props':
518
+ if game_select_var == 'Aggregate':
519
+ prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
520
+ sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
521
+ 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
522
+ elif game_select_var == 'Pick6':
523
+ prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
524
+ sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
525
+
526
+ player_df = overall_stats.copy()
527
+
528
+ for prop in sim_vars:
529
+
530
+ for books in book_selections:
531
+ prop_df = prop_df_raw[prop_df_raw['book'] == books]
532
+ prop_df = prop_df[prop_df['prop_type'] == prop]
533
+ prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
534
+ prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
535
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
536
+ prop_df['Over'] = 1 / prop_df['over_line']
537
+ prop_df['Under'] = 1 / prop_df['under_line']
538
+
539
+ prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
540
+ prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
541
+ book_dict = dict(zip(prop_df.Player, prop_df.book))
542
+ over_dict = dict(zip(prop_df.Player, prop_df.Over))
543
+ under_dict = dict(zip(prop_df.Player, prop_df.Under))
544
+ trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
545
+ trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
546
+
547
+ player_df['book'] = player_df['Player'].map(book_dict)
548
+ player_df['Prop'] = player_df['Player'].map(prop_dict)
549
+ player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
550
+ player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
551
+ player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
552
+
553
+ df = player_df.reset_index(drop=True)
554
+
555
+ team_dict = dict(zip(df.Player, df.Team))
556
+
557
+ total_sims = 1000
558
+
559
+ df.replace("", 0, inplace=True)
560
+
561
+ if prop == "NFL_GAME_PLAYER_PASSING_YARDS" or prop == "Passing Yards":
562
+ df['Median'] = df['pass_yards']
563
+ elif prop == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop == "Rushing Yards":
564
+ df['Median'] = df['rush_yards']
565
+ elif prop == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop == "Passing Attempts":
566
+ df['Median'] = df['pass_att']
567
+ elif prop == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop == "Passing TDs":
568
+ df['Median'] = df['pass_tds']
569
+ elif prop == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop == "Rushing Attempts":
570
+ df['Median'] = df['rush_att']
571
+ elif prop == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop == "Receptions":
572
+ df['Median'] = df['rec']
573
+ elif prop == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop == "Receiving Yards":
574
+ df['Median'] = df['rec_yards']
575
+ elif prop == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop == "Receiving TDs":
576
+ df['Median'] = df['rec_tds']
577
+ elif prop == "Rush + Rec Yards":
578
+ df['Median'] = df['rush_yards'] + df['rec_yards']
579
+ elif prop == "Rush + Rec TDs":
580
+ df['Median'] = df['rush_tds'] + df['rec_tds']
581
 
582
+ flex_file = df.copy()
583
+ flex_file['Floor'] = flex_file['Median'] * .25
584
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
585
+ flex_file['STD'] = flex_file['Median'] / 4
586
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
587
+ flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
588
+
589
+ hold_file = flex_file.copy()
590
+ overall_file = flex_file.copy()
591
+ prop_file = flex_file.copy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592
 
593
+ overall_players = overall_file[['Player']]
594
 
595
+ for x in range(0,total_sims):
596
+ prop_file[x] = prop_file['Prop']
597
 
598
+ prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599
 
600
+ for x in range(0,total_sims):
601
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
602
+
603
+ overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
604
+
605
+ players_only = hold_file[['Player']]
606
+
607
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
608
+
609
+ prop_check = (overall_file - prop_file)
610
+
611
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
612
+ players_only['Book'] = players_only['Player'].map(book_dict)
613
+ players_only['Prop'] = players_only['Player'].map(prop_dict)
614
+ players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
615
+ players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
616
+ players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
617
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
618
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
619
+ players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
620
+ players_only['Imp Over'] = players_only['Player'].map(over_dict)
621
+ players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
622
+ players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
623
+ players_only['Imp Under'] = players_only['Player'].map(under_dict)
624
+ players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
625
+ players_only['Prop_avg'] = players_only['Prop'].mean() / 100
626
+ players_only['prop_threshold'] = .10
627
+ players_only = players_only[players_only['Mean_Outcome'] > 0]
628
+ players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
629
+ players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
630
+ players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
631
+ players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
632
+ players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
633
+ players_only['Edge'] = players_only['Bet_check']
634
+ players_only['Prop Type'] = prop
635
+
636
+ players_only['Player'] = hold_file[['Player']]
637
+ players_only['Team'] = players_only['Player'].map(team_dict)
638
+
639
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
640
+ sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
641
+
642
+ final_outcomes = sim_all_hold
643
+ st.write(f'finished {prop} for {books}')
644
+
645
+ elif prop_type_var != 'All Props':
646
+
647
+ player_df = overall_stats.copy()
648
+
649
+ if game_select_var == 'Aggregate':
650
+ prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
651
+ elif game_select_var == 'Pick6':
652
+ prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
653
+
654
+ for books in book_selections:
655
+ prop_df = prop_df_raw[prop_df_raw['book'] == books]
656
+
657
+ if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS":
658
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
659
+ elif prop_type_var == "Passing Yards":
660
+ prop_df = prop_df[prop_df['prop_type'] == 'Passing Yards']
661
+ elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS":
662
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
663
+ elif prop_type_var == "Rushing Yards":
664
+ prop_df = prop_df[prop_df['prop_type'] == 'Rushing Yards']
665
+ elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS":
666
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
667
+ elif prop_type_var == "Passing Attempts":
668
+ prop_df = prop_df[prop_df['prop_type'] == 'Passing Attempts']
669
+ elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS":
670
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS']
671
+ elif prop_type_var == "Passing TDs":
672
+ prop_df = prop_df[prop_df['prop_type'] == 'Passing TDs']
673
+ elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS":
674
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
675
+ elif prop_type_var == "Rushing Attempts":
676
+ prop_df = prop_df[prop_df['prop_type'] == 'Rushing Attempts']
677
+ elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS":
678
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
679
+ elif prop_type_var == "Receptions":
680
+ prop_df = prop_df[prop_df['prop_type'] == 'Receptions']
681
+ elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS":
682
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
683
+ elif prop_type_var == "Receiving Yards":
684
+ prop_df = prop_df[prop_df['prop_type'] == 'Receiving Yards']
685
+ elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS":
686
+ prop_df = prop_df[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
687
+ elif prop_type_var == "Receiving TDs":
688
+ prop_df = prop_df[prop_df['prop_type'] == 'Receiving TDs']
689
+ elif prop_type_var == "Rush + Rec Yards":
690
+ prop_df = prop_df[prop_df['prop_type'] == 'Rush + Rec Yards']
691
+ elif prop_type_var == "Rush + Rec TDs":
692
+ prop_df = prop_df[prop_df['prop_type'] == 'Rush + Rec TDs']
693
+
694
+ prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
695
+ prop_df = prop_df.rename(columns={"over_prop": "Prop"})
696
+ prop_df['Over'] = 1 / prop_df['over_line']
697
+ prop_df['Under'] = 1 / prop_df['under_line']
698
+
699
+ prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
700
+ prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
701
+ book_dict = dict(zip(prop_df.Player, prop_df.book))
702
+ over_dict = dict(zip(prop_df.Player, prop_df.Over))
703
+ under_dict = dict(zip(prop_df.Player, prop_df.Under))
704
+ trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
705
+ trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
706
+
707
+ player_df['book'] = player_df['Player'].map(book_dict)
708
+ player_df['Prop'] = player_df['Player'].map(prop_dict)
709
+ player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
710
+ player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
711
+ player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
712
+
713
+ df = player_df.reset_index(drop=True)
714
+
715
+ team_dict = dict(zip(df.Player, df.Team))
716
+
717
+ total_sims = 1000
718
+
719
+ df.replace("", 0, inplace=True)
720
+
721
+ if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS" or prop_type_var == "Passing Yards":
722
+ df['Median'] = df['pass_yards']
723
+ elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop_type_var == "Rushing Yards":
724
+ df['Median'] = df['rush_yards']
725
+ elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop_type_var == "Passing Attempts":
726
+ df['Median'] = df['pass_att']
727
+ elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop_type_var == "Passing TDs":
728
+ df['Median'] = df['pass_tds']
729
+ elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop_type_var == "Rushing Attempts":
730
+ df['Median'] = df['rush_att']
731
+ elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop_type_var == "Receptions":
732
+ df['Median'] = df['rec']
733
+ elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop_type_var == "Receiving Yards":
734
+ df['Median'] = df['rec_yards']
735
+ elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop_type_var == "Receiving TDs":
736
+ df['Median'] = df['rec_tds']
737
+ elif prop_type_var == "Rush + Rec Yards":
738
+ df['Median'] = df['rush_yards'] + df['rec_yards']
739
+ elif prop_type_var == "Rush + Rec TDs":
740
+ df['Median'] = df['rush_tds'] + df['rec_tds']
741
+
742
+ flex_file = df.copy()
743
+ flex_file['Floor'] = flex_file['Median'] * .25
744
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
745
+ flex_file['STD'] = flex_file['Median'] / 4
746
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
747
+ flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
748
+
749
+ hold_file = flex_file.copy()
750
+ overall_file = flex_file.copy()
751
+ prop_file = flex_file.copy()
752
 
753
+ overall_players = overall_file[['Player']]
754
+
755
+ for x in range(0,total_sims):
756
+ prop_file[x] = prop_file['Prop']
757
+
758
+ prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
759
+
760
+ for x in range(0,total_sims):
761
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
762
+
763
+ overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
764
+
765
+ players_only = hold_file[['Player']]
766
+
767
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
768
+
769
+ prop_check = (overall_file - prop_file)
770
+
771
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
772
+ players_only['Book'] = players_only['Player'].map(book_dict)
773
+ players_only['Prop'] = players_only['Player'].map(prop_dict)
774
+ players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
775
+ players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
776
+ players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
777
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
778
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
779
+ players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
780
+ players_only['Imp Over'] = players_only['Player'].map(over_dict)
781
+ players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
782
+ players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
783
+ players_only['Imp Under'] = players_only['Player'].map(under_dict)
784
+ players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
785
+ players_only['Prop_avg'] = players_only['Prop'].mean() / 100
786
+ players_only['prop_threshold'] = .10
787
+ players_only = players_only[players_only['Mean_Outcome'] > 0]
788
+ players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
789
+ players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
790
+ players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
791
+ players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
792
+ players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
793
+ players_only['Edge'] = players_only['Bet_check']
794
+ players_only['Prop Type'] = prop_type_var
795
+
796
+ players_only['Player'] = hold_file[['Player']]
797
+ players_only['Team'] = players_only['Player'].map(team_dict)
798
+
799
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
800
+ sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
801
+
802
+ final_outcomes = sim_all_hold
803
+ st.write(f'finished {prop_type_var} for {books}')
804
+
805
+ final_outcomes = final_outcomes.dropna()
806
+ if game_select_var == 'Pick6':
807
+ final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
808
+ final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
809
+
810
+ with df_hold_container:
811
+ df_hold_container = st.empty()
812
+ st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
813
+ with export_container:
814
+ export_container = st.empty()
815
+ st.download_button(
816
+ label="Export Projections",
817
+ data=convert_df_to_csv(final_outcomes),
818
+ file_name='NFL_prop_proj.csv',
819
+ mime='text/csv',
820
+ key='prop_proj',
821
+ )
822
+