James McCool commited on
Commit
02caa74
·
1 Parent(s): 6bba819

removed use of gspread

Browse files
Files changed (1) hide show
  1. app.py +36 -28
app.py CHANGED
@@ -42,14 +42,15 @@ def init_conn():
42
 
43
  uri = st.secrets['mongo_uri']
44
  client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
45
- db = client["Props_DB"]
 
46
 
47
  gc = gspread.service_account_from_dict(credentials)
48
  gc2 = gspread.service_account_from_dict(credentials2)
49
 
50
- return gc, gc2, NFL_Data, db
51
 
52
- gcservice_account, gcservice_account2, NFL_Data, db = init_conn()
53
 
54
  game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
55
  american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
@@ -63,37 +64,44 @@ def calculate_poisson(row):
63
 
64
  @st.cache_resource(ttl=600)
65
  def init_baselines():
66
- sh = gcservice_account.open_by_url(NFL_Data)
67
- worksheet = sh.worksheet('Game_Betting')
68
- raw_display = pd.DataFrame(worksheet.get_all_records())
69
- raw_display.replace('#DIV/0!', np.nan, inplace=True)
70
- game_model = raw_display.copy()
71
 
72
- worksheet = sh.worksheet('Prop_Table')
73
- raw_display = pd.DataFrame(worksheet.get_all_records())
74
- raw_display.replace('', np.nan, inplace=True)
75
- overall_stats = raw_display.dropna()
76
 
77
- worksheet = sh.worksheet('prop_frame')
78
- raw_display = pd.DataFrame(worksheet.get_all_records())
79
- raw_display.replace('', np.nan, inplace=True)
80
- prop_trends = raw_display.copy()
 
81
 
82
- worksheet = sh.worksheet('DK_ROO')
83
- timestamp = worksheet.acell('U2').value
 
 
 
 
 
 
84
 
85
- worksheet = sh.worksheet('prop_frame')
86
- raw_display = pd.DataFrame(worksheet.get_all_records())
87
- raw_display.replace('', np.nan, inplace=True)
88
- raw_display.replace('#DIV/0!', np.nan, inplace=True)
89
- prop_frame = raw_display.copy()
90
 
91
- worksheet = sh.worksheet('Pick6_ingest')
92
- raw_display = pd.DataFrame(worksheet.get_all_records())
93
- raw_display.replace('', np.nan, inplace=True)
94
- pick_frame = raw_display.dropna(subset='Player')
 
95
 
96
- collection = db["NFL_Props"]
97
  cursor = collection.find()
98
 
99
  raw_display = pd.DataFrame(list(cursor))
 
42
 
43
  uri = st.secrets['mongo_uri']
44
  client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
45
+ dfs_db = client["NFL_Database"]
46
+ props_db = client["Props_DB"]
47
 
48
  gc = gspread.service_account_from_dict(credentials)
49
  gc2 = gspread.service_account_from_dict(credentials2)
50
 
51
+ return gc, gc2, NFL_Data, props_db, dfs_db
52
 
53
+ gcservice_account, gcservice_account2, NFL_Data, props_db, dfs_db = init_conn()
54
 
55
  game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
56
  american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
 
64
 
65
  @st.cache_resource(ttl=600)
66
  def init_baselines():
67
+ collection = dfs_db["Game_Betting_Model"]
68
+ cursor = collection.find()
69
+ raw_display = pd.DataFrame(list(cursor))
70
+ game_model = raw_display[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
 
71
 
72
+ collection = dfs_db["Player_Stats"]
73
+ cursor = collection.find()
74
+ raw_display = pd.DataFrame(list(cursor))
75
+ overall_stats = raw_display[['Player', 'Position', 'Team', 'Opp', 'rush_att', 'rec', 'dropbacks', 'rush_yards', 'rush_tds', 'rec_yards', 'rec_tds', 'pass_att', 'pass_yards', 'pass_tds', 'PPR', 'Half_PPR']]
76
 
77
+ collection = dfs_db["Prop_Trends"]
78
+ cursor = collection.find()
79
+ raw_display = pd.DataFrame(list(cursor))
80
+ prop_trends = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
81
+ 'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
82
 
83
+ collection = dfs_db["DK_NFL_ROO"]
84
+ cursor = collection.find()
85
+
86
+ raw_display = pd.DataFrame(list(cursor))
87
+ raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
88
+ 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
89
+ load_display = raw_display[raw_display['Position'] != 'K']
90
+ timestamp = load_display['timestamp'][0]
91
 
92
+ collection = dfs_db["Prop_Trends"]
93
+ cursor = collection.find()
94
+ raw_display = pd.DataFrame(list(cursor))
95
+ prop_frame = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
96
+ 'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
97
 
98
+ collection = dfs_db['Pick6_ingest']
99
+ cursor = collection.find()
100
+ raw_display = pd.DataFrame(list(cursor))
101
+ pick_frame = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
102
+ 'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge', 'last_name', 'P6_name', 'Full_name']]
103
 
104
+ collection = props_db["NFL_Props"]
105
  cursor = collection.find()
106
 
107
  raw_display = pd.DataFrame(list(cursor))