James McCool
commited on
Commit
·
d7af247
1
Parent(s):
f0414d7
Refactor app.py to streamline database connections and enhance data retrieval methods. Removed hardcoded credentials and replaced them with environment variables. Updated functions to include a 'split' parameter for limiting data fetched from MongoDB. Added auxiliary seed frame functions for both DraftKings and FanDuel. Improved simulation logic for contest entries and ownership calculations. Cleaned up unused variables and optimized data handling for better performance.
Browse files
app.py
CHANGED
@@ -8,47 +8,13 @@ import time
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
11 |
-
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
12 |
-
|
13 |
-
credentials = {
|
14 |
-
"type": "service_account",
|
15 |
-
"project_id": "model-sheets-connect",
|
16 |
-
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
17 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
18 |
-
"client_email": "[email protected]",
|
19 |
-
"client_id": "100369174533302798535",
|
20 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
21 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
22 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
23 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
24 |
-
}
|
25 |
-
|
26 |
-
credentials2 = {
|
27 |
-
"type": "service_account",
|
28 |
-
"project_id": "sheets-api-connect-378620",
|
29 |
-
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
30 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
31 |
-
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
32 |
-
"client_id": "106625872877651920064",
|
33 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
34 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
35 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
36 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
37 |
-
}
|
38 |
|
39 |
uri = st.secrets['mongo_uri']
|
40 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
41 |
-
|
42 |
-
NFL_Data = st.secrets['NFL_Data']
|
43 |
-
|
44 |
-
NBA_Data = st.secrets['NBA_Data']
|
45 |
|
46 |
-
|
47 |
-
gc2 = gspread.service_account_from_dict(credentials2)
|
48 |
-
|
49 |
-
return gc, gc2, client, NFL_Data, NBA_Data
|
50 |
|
51 |
-
|
52 |
|
53 |
percentages_format = {'Exposure': '{:.2%}'}
|
54 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
@@ -56,14 +22,14 @@ dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'pro
|
|
56 |
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
57 |
|
58 |
@st.cache_data(ttl = 599)
|
59 |
-
def init_DK_seed_frames(sport):
|
60 |
if sport == 'NFL':
|
61 |
-
db = client["
|
62 |
elif sport == 'NBA':
|
63 |
db = client["NBA_DFS"]
|
64 |
|
65 |
collection = db[f"DK_{sport}_SD_seed_frame"]
|
66 |
-
cursor = collection.find()
|
67 |
|
68 |
raw_display = pd.DataFrame(list(cursor))
|
69 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -72,32 +38,49 @@ def init_DK_seed_frames(sport):
|
|
72 |
return DK_seed
|
73 |
|
74 |
@st.cache_data(ttl = 599)
|
75 |
-
def init_DK_secondary_seed_frames(sport):
|
76 |
|
77 |
if sport == 'NFL':
|
78 |
-
db = client["
|
79 |
elif sport == 'NBA':
|
80 |
db = client["NBA_DFS"]
|
81 |
|
82 |
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
|
83 |
-
cursor = collection.find()
|
84 |
|
85 |
raw_display = pd.DataFrame(list(cursor))
|
86 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
87 |
DK_second_seed = raw_display.to_numpy()
|
88 |
|
89 |
return DK_second_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
@st.cache_data(ttl = 599)
|
92 |
-
def init_FD_seed_frames(sport):
|
93 |
|
94 |
if sport == 'NFL':
|
95 |
-
db = client["
|
96 |
elif sport == 'NBA':
|
97 |
db = client["NBA_DFS"]
|
98 |
|
99 |
collection = db[f"FD_{sport}_SD_seed_frame"]
|
100 |
-
cursor = collection.find()
|
101 |
|
102 |
raw_display = pd.DataFrame(list(cursor))
|
103 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -106,15 +89,15 @@ def init_FD_seed_frames(sport):
|
|
106 |
return FD_seed
|
107 |
|
108 |
@st.cache_data(ttl = 599)
|
109 |
-
def init_FD_secondary_seed_frames(sport):
|
110 |
|
111 |
if sport == 'NFL':
|
112 |
-
db = client["
|
113 |
elif sport == 'NBA':
|
114 |
db = client["NBA_DFS"]
|
115 |
|
116 |
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
|
117 |
-
cursor = collection.find()
|
118 |
|
119 |
raw_display = pd.DataFrame(list(cursor))
|
120 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
@@ -122,54 +105,90 @@ def init_FD_secondary_seed_frames(sport):
|
|
122 |
|
123 |
return FD_second_seed
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
@st.cache_data(ttl = 599)
|
126 |
def init_baselines(sport):
|
127 |
if sport == 'NFL':
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
dk_raw =
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
fd_raw =
|
148 |
|
149 |
elif sport == 'NBA':
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
-
dk_raw =
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
fd_raw =
|
173 |
|
174 |
return dk_raw, fd_raw
|
175 |
|
@@ -193,25 +212,32 @@ def calculate_FD_value_frequencies(np_array):
|
|
193 |
return combined_array
|
194 |
|
195 |
@st.cache_data
|
196 |
-
def sim_contest(Sim_size, seed_frame, maps_dict,
|
197 |
SimVar = 1
|
198 |
Sim_Winners = []
|
199 |
-
fp_array = seed_frame[:sharp_split, :]
|
200 |
|
201 |
# Pre-vectorize functions
|
202 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
|
|
203 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
|
|
204 |
|
205 |
st.write('Simulating contest on frames')
|
206 |
|
207 |
while SimVar <= Sim_size:
|
208 |
-
fp_random =
|
209 |
|
210 |
sample_arrays1 = np.c_[
|
211 |
-
fp_random,
|
212 |
np.sum(np.random.normal(
|
213 |
-
loc=
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
axis=1)
|
216 |
]
|
217 |
|
@@ -224,6 +250,8 @@ def sim_contest(Sim_size, seed_frame, maps_dict, sharp_split, Contest_Size):
|
|
224 |
|
225 |
return Sim_Winners
|
226 |
|
|
|
|
|
227 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
228 |
with tab2:
|
229 |
col1, col2 = st.columns([1, 7])
|
@@ -235,17 +263,11 @@ with tab2:
|
|
235 |
dk_raw, fd_raw = init_baselines('NFL')
|
236 |
|
237 |
sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sport_var1')
|
238 |
-
|
239 |
-
|
240 |
|
241 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
242 |
if site_var1 == 'Draftkings':
|
243 |
-
if slate_var1 == 'Showdown':
|
244 |
-
DK_seed = init_DK_seed_frames(sport_var1)
|
245 |
-
elif slate_var1 == 'Secondary Showdown':
|
246 |
-
DK_seed = init_DK_secondary_seed_frames(sport_var1)
|
247 |
-
raw_baselines = dk_raw
|
248 |
-
column_names = dk_columns
|
249 |
|
250 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
251 |
if team_var1 == 'Specific Teams':
|
@@ -260,12 +282,6 @@ with tab2:
|
|
260 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
261 |
|
262 |
elif site_var1 == 'Fanduel':
|
263 |
-
if slate_var1 == 'Showdown':
|
264 |
-
FD_seed = init_FD_seed_frames(sport_var1)
|
265 |
-
elif slate_var1 == 'Secondary Showdown':
|
266 |
-
FD_seed = init_FD_secondary_seed_frames(sport_var1)
|
267 |
-
raw_baselines = fd_raw
|
268 |
-
column_names = fd_columns
|
269 |
|
270 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
271 |
if team_var1 == 'Specific Teams':
|
@@ -281,11 +297,58 @@ with tab2:
|
|
281 |
|
282 |
|
283 |
if st.button("Prepare data export", key='data_export'):
|
|
|
284 |
data_export = st.session_state.working_seed.copy()
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
mime='text/csv',
|
290 |
)
|
291 |
|
@@ -297,7 +360,24 @@ with tab2:
|
|
297 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
298 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
299 |
elif 'working_seed' not in st.session_state:
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
|
302 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
303 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -308,7 +388,26 @@ with tab2:
|
|
308 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
309 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
310 |
elif 'working_seed' not in st.session_state:
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
|
313 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
314 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
@@ -327,32 +426,28 @@ with tab1:
|
|
327 |
dk_raw, fd_raw = init_baselines('NFL')
|
328 |
sim_sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sim_sport_var1')
|
329 |
dk_raw, fd_raw = init_baselines(sim_sport_var1)
|
330 |
-
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown'), key='sim_slate_var1')
|
331 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
332 |
if sim_site_var1 == 'Draftkings':
|
333 |
-
if sim_slate_var1 == 'Showdown':
|
334 |
-
DK_seed = init_DK_seed_frames(sim_sport_var1)
|
335 |
-
elif sim_slate_var1 == 'Secondary Showdown':
|
336 |
-
DK_seed = init_DK_secondary_seed_frames(sim_sport_var1)
|
337 |
raw_baselines = dk_raw
|
338 |
column_names = dk_columns
|
339 |
elif sim_site_var1 == 'Fanduel':
|
340 |
-
if sim_slate_var1 == 'Showdown':
|
341 |
-
FD_seed = init_FD_seed_frames(sim_sport_var1)
|
342 |
-
elif sim_slate_var1 == 'Secondary Showdown':
|
343 |
-
FD_seed = init_FD_secondary_seed_frames(sim_sport_var1)
|
344 |
raw_baselines = fd_raw
|
345 |
column_names = fd_columns
|
346 |
-
|
347 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
348 |
if contest_var1 == 'Small':
|
349 |
Contest_Size = 1000
|
|
|
|
|
|
|
350 |
elif contest_var1 == 'Medium':
|
351 |
Contest_Size = 5000
|
|
|
352 |
elif contest_var1 == 'Large':
|
353 |
Contest_Size = 10000
|
|
|
354 |
elif contest_var1 == 'Custom':
|
355 |
-
Contest_Size = st.number_input("Insert contest size", value=100,
|
356 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
357 |
if strength_var1 == 'Not Very':
|
358 |
sharp_split = 500000
|
@@ -371,13 +466,16 @@ with tab1:
|
|
371 |
if 'working_seed' in st.session_state:
|
372 |
maps_dict = {
|
373 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
|
|
374 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
375 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
376 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
|
|
377 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
378 |
-
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
|
|
379 |
}
|
380 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
381 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
382 |
|
383 |
#st.table(Sim_Winner_Frame)
|
@@ -404,18 +502,59 @@ with tab1:
|
|
404 |
|
405 |
else:
|
406 |
if sim_site_var1 == 'Draftkings':
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
elif sim_site_var1 == 'Fanduel':
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
maps_dict = {
|
411 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
|
|
412 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
413 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
414 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
|
|
415 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
416 |
-
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
|
|
417 |
}
|
418 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict,
|
419 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
420 |
|
421 |
#st.table(Sim_Winner_Frame)
|
@@ -424,10 +563,86 @@ with tab1:
|
|
424 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
425 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
426 |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
428 |
|
429 |
# Type Casting
|
430 |
-
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
431 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
432 |
|
433 |
# Sorting
|
@@ -436,6 +651,7 @@ with tab1:
|
|
436 |
|
437 |
# Data Copying
|
438 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
|
|
439 |
|
440 |
# Data Copying
|
441 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
@@ -450,7 +666,10 @@ with tab1:
|
|
450 |
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
451 |
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
452 |
if sim_site_var1 == 'Draftkings':
|
453 |
-
|
|
|
|
|
|
|
454 |
elif sim_site_var1 == 'Fanduel':
|
455 |
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
456 |
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
@@ -462,15 +681,16 @@ with tab1:
|
|
462 |
if sim_site_var1 == 'Draftkings':
|
463 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
464 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
465 |
-
cpt_own_div = 600
|
466 |
elif sim_site_var1 == 'Fanduel':
|
467 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
468 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
469 |
-
cpt_own_div = 500
|
470 |
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
471 |
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
472 |
-
|
473 |
-
|
|
|
|
|
|
|
474 |
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
475 |
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
476 |
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
@@ -487,10 +707,13 @@ with tab1:
|
|
487 |
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
488 |
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
|
489 |
if sim_site_var1 == 'Draftkings':
|
490 |
-
|
|
|
|
|
|
|
491 |
elif sim_site_var1 == 'Fanduel':
|
492 |
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
493 |
-
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['
|
494 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
495 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
496 |
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
@@ -505,16 +728,6 @@ with tab1:
|
|
505 |
team_working['Freq'] = team_working['Freq'].astype(int)
|
506 |
team_working['Exposure'] = team_working['Freq']/(1000)
|
507 |
st.session_state.team_freq = team_working.copy()
|
508 |
-
|
509 |
-
if sim_site_var1 == 'Draftkings':
|
510 |
-
stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,10:11].values, return_counts=True)),
|
511 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
512 |
-
elif sim_site_var1 == 'Fanduel':
|
513 |
-
stack_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,9:10].values, return_counts=True)),
|
514 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
515 |
-
stack_working['Freq'] = stack_working['Freq'].astype(int)
|
516 |
-
stack_working['Exposure'] = stack_working['Freq']/(1000)
|
517 |
-
st.session_state.stack_freq = stack_working.copy()
|
518 |
|
519 |
with st.container():
|
520 |
if st.button("Reset Sim", key='reset_sim'):
|
|
|
8 |
|
9 |
@st.cache_resource
|
10 |
def init_conn():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
uri = st.secrets['mongo_uri']
|
13 |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
return client
|
|
|
|
|
|
|
16 |
|
17 |
+
client = init_conn()
|
18 |
|
19 |
percentages_format = {'Exposure': '{:.2%}'}
|
20 |
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
|
|
22 |
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
|
24 |
@st.cache_data(ttl = 599)
|
25 |
+
def init_DK_seed_frames(sport, split):
|
26 |
if sport == 'NFL':
|
27 |
+
db = client["NFL_Database"]
|
28 |
elif sport == 'NBA':
|
29 |
db = client["NBA_DFS"]
|
30 |
|
31 |
collection = db[f"DK_{sport}_SD_seed_frame"]
|
32 |
+
cursor = collection.find().limit(split)
|
33 |
|
34 |
raw_display = pd.DataFrame(list(cursor))
|
35 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
38 |
return DK_seed
|
39 |
|
40 |
@st.cache_data(ttl = 599)
|
41 |
+
def init_DK_secondary_seed_frames(sport, split):
|
42 |
|
43 |
if sport == 'NFL':
|
44 |
+
db = client["NFL_Database"]
|
45 |
elif sport == 'NBA':
|
46 |
db = client["NBA_DFS"]
|
47 |
|
48 |
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
|
49 |
+
cursor = collection.find().limit(split)
|
50 |
|
51 |
raw_display = pd.DataFrame(list(cursor))
|
52 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
53 |
DK_second_seed = raw_display.to_numpy()
|
54 |
|
55 |
return DK_second_seed
|
56 |
+
|
57 |
+
@st.cache_data(ttl = 599)
|
58 |
+
def init_DK_auxiliary_seed_frames(sport, split):
|
59 |
+
|
60 |
+
if sport == 'NFL':
|
61 |
+
db = client["NFL_Database"]
|
62 |
+
elif sport == 'NBA':
|
63 |
+
db = client["NBA_DFS"]
|
64 |
+
|
65 |
+
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
|
66 |
+
cursor = collection.find().limit(split)
|
67 |
+
|
68 |
+
raw_display = pd.DataFrame(list(cursor))
|
69 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
70 |
+
DK_auxiliary_seed = raw_display.to_numpy()
|
71 |
+
|
72 |
+
return DK_auxiliary_seed
|
73 |
|
74 |
@st.cache_data(ttl = 599)
|
75 |
+
def init_FD_seed_frames(sport, split):
|
76 |
|
77 |
if sport == 'NFL':
|
78 |
+
db = client["NFL_Database"]
|
79 |
elif sport == 'NBA':
|
80 |
db = client["NBA_DFS"]
|
81 |
|
82 |
collection = db[f"FD_{sport}_SD_seed_frame"]
|
83 |
+
cursor = collection.find().limit(split)
|
84 |
|
85 |
raw_display = pd.DataFrame(list(cursor))
|
86 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
89 |
return FD_seed
|
90 |
|
91 |
@st.cache_data(ttl = 599)
|
92 |
+
def init_FD_secondary_seed_frames(sport, split):
|
93 |
|
94 |
if sport == 'NFL':
|
95 |
+
db = client["NFL_Database"]
|
96 |
elif sport == 'NBA':
|
97 |
db = client["NBA_DFS"]
|
98 |
|
99 |
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
|
100 |
+
cursor = collection.find().limit(split)
|
101 |
|
102 |
raw_display = pd.DataFrame(list(cursor))
|
103 |
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
105 |
|
106 |
return FD_second_seed
|
107 |
|
108 |
+
@st.cache_data(ttl = 599)
|
109 |
+
def init_FD_auxiliary_seed_frames(sport, split):
|
110 |
+
|
111 |
+
if sport == 'NFL':
|
112 |
+
db = client["NFL_Database"]
|
113 |
+
elif sport == 'NBA':
|
114 |
+
db = client["NBA_DFS"]
|
115 |
+
|
116 |
+
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
|
117 |
+
cursor = collection.find().limit(split)
|
118 |
+
|
119 |
+
raw_display = pd.DataFrame(list(cursor))
|
120 |
+
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
121 |
+
FD_auxiliary_seed = raw_display.to_numpy()
|
122 |
+
|
123 |
+
return FD_auxiliary_seed
|
124 |
+
|
125 |
@st.cache_data(ttl = 599)
|
126 |
def init_baselines(sport):
|
127 |
if sport == 'NFL':
|
128 |
+
db = client["NFL_Database"]
|
129 |
+
collection = db['DK_SD_NFL_ROO']
|
130 |
+
cursor = collection.find()
|
131 |
+
|
132 |
+
raw_display = pd.DataFrame(list(cursor))
|
133 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
134 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
135 |
+
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
|
136 |
+
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
|
137 |
+
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
|
138 |
+
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
|
139 |
+
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
|
140 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
141 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
142 |
|
143 |
+
dk_raw = raw_display.dropna(subset=['Median'])
|
144 |
|
145 |
+
collection = db['FD_SD_NFL_ROO']
|
146 |
+
cursor = collection.find()
|
147 |
+
|
148 |
+
raw_display = pd.DataFrame(list(cursor))
|
149 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
150 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
151 |
+
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
|
152 |
+
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
|
153 |
+
raw_display['cpt_Median'] = raw_display['Median']
|
154 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
155 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
156 |
|
157 |
+
fd_raw = raw_display.dropna(subset=['Median'])
|
158 |
|
159 |
elif sport == 'NBA':
|
160 |
+
db = client["NBA_DFS"]
|
161 |
+
collection = db['Player_SD_Range_Of_Outcomes']
|
162 |
+
cursor = collection.find()
|
163 |
+
|
164 |
+
raw_display = pd.DataFrame(list(cursor))
|
165 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
166 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
167 |
+
raw_display = raw_display[raw_display['site'] == 'Draftkings']
|
168 |
+
raw_display['Small_Field_Own'] = raw_display['Small_Own']
|
169 |
+
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
|
170 |
+
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
|
171 |
+
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
|
172 |
+
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
|
173 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
174 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
175 |
|
176 |
+
dk_raw = raw_display.dropna(subset=['Median'])
|
177 |
|
178 |
+
collection = db['Player_SD_Range_Of_Outcomes']
|
179 |
+
cursor = collection.find()
|
180 |
+
|
181 |
+
raw_display = pd.DataFrame(list(cursor))
|
182 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
183 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
|
184 |
+
raw_display = raw_display[raw_display['site'] == 'Fanduel']
|
185 |
+
raw_display['Small_Field_Own'] = raw_display['Large_Own']
|
186 |
+
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
|
187 |
+
raw_display['cpt_Median'] = raw_display['Median']
|
188 |
+
raw_display['STDev'] = raw_display['Median'] / 4
|
189 |
+
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
|
190 |
|
191 |
+
fd_raw = raw_display.dropna(subset=['Median'])
|
192 |
|
193 |
return dk_raw, fd_raw
|
194 |
|
|
|
212 |
return combined_array
|
213 |
|
214 |
@st.cache_data
|
215 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
|
216 |
SimVar = 1
|
217 |
Sim_Winners = []
|
|
|
218 |
|
219 |
# Pre-vectorize functions
|
220 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
221 |
+
vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__)
|
222 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
223 |
+
vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__)
|
224 |
|
225 |
st.write('Simulating contest on frames')
|
226 |
|
227 |
while SimVar <= Sim_size:
|
228 |
+
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
|
229 |
|
230 |
sample_arrays1 = np.c_[
|
231 |
+
fp_random,
|
232 |
np.sum(np.random.normal(
|
233 |
+
loc=np.concatenate([
|
234 |
+
vec_cpt_projection_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
|
235 |
+
vec_projection_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
|
236 |
+
], axis=1),
|
237 |
+
scale=np.concatenate([
|
238 |
+
vec_cpt_stdev_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
|
239 |
+
vec_stdev_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
|
240 |
+
], axis=1)),
|
241 |
axis=1)
|
242 |
]
|
243 |
|
|
|
250 |
|
251 |
return Sim_Winners
|
252 |
|
253 |
+
dk_raw, fd_raw = init_baselines('NFL')
|
254 |
+
|
255 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
256 |
with tab2:
|
257 |
col1, col2 = st.columns([1, 7])
|
|
|
263 |
dk_raw, fd_raw = init_baselines('NFL')
|
264 |
|
265 |
sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sport_var1')
|
266 |
+
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
|
267 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
268 |
|
269 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
270 |
if site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
273 |
if team_var1 == 'Specific Teams':
|
|
|
282 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
283 |
|
284 |
elif site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
287 |
if team_var1 == 'Specific Teams':
|
|
|
297 |
|
298 |
|
299 |
if st.button("Prepare data export", key='data_export'):
|
300 |
+
if 'working_seed' in st.session_state:
|
301 |
data_export = st.session_state.working_seed.copy()
|
302 |
+
elif 'working_seed' not in st.session_state:
|
303 |
+
if site_var1 == 'Draftkings':
|
304 |
+
if slate_var1 == 'Showdown':
|
305 |
+
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
|
306 |
+
if sport_var1 == 'NFL':
|
307 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
308 |
+
elif sport_var1 == 'NBA':
|
309 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
310 |
+
elif slate_var1 == 'Secondary Showdown':
|
311 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
|
312 |
+
if sport_var1 == 'NFL':
|
313 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
314 |
+
elif sport_var1 == 'NBA':
|
315 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
316 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
317 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
318 |
+
if sport_var1 == 'NFL':
|
319 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
320 |
+
elif sport_var1 == 'NBA':
|
321 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
322 |
+
raw_baselines = dk_raw
|
323 |
+
column_names = dk_columns
|
324 |
+
elif site_var1 == 'Fanduel':
|
325 |
+
if slate_var1 == 'Showdown':
|
326 |
+
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
|
327 |
+
if sport_var1 == 'NFL':
|
328 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
329 |
+
elif sport_var1 == 'NBA':
|
330 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
331 |
+
elif slate_var1 == 'Secondary Showdown':
|
332 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
|
333 |
+
if sport_var1 == 'NFL':
|
334 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
335 |
+
elif sport_var1 == 'NBA':
|
336 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
337 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
338 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
339 |
+
if sport_var1 == 'NFL':
|
340 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
341 |
+
elif sport_var1 == 'NBA':
|
342 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
343 |
+
raw_baselines = fd_raw
|
344 |
+
column_names = fd_columns
|
345 |
+
data_export = st.session_state.working_seed.copy()
|
346 |
+
for col in range(6):
|
347 |
+
data_export[:, col] = np.array([export_id_dict.get(x, x) for x in data_export[:, col]])
|
348 |
+
st.download_button(
|
349 |
+
label="Export optimals set",
|
350 |
+
data=convert_df(data_export),
|
351 |
+
file_name='NFL_SD_optimals_export.csv',
|
352 |
mime='text/csv',
|
353 |
)
|
354 |
|
|
|
360 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
361 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
362 |
elif 'working_seed' not in st.session_state:
|
363 |
+
if slate_var1 == 'Showdown':
|
364 |
+
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
|
365 |
+
if sport_var1 == 'NFL':
|
366 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
367 |
+
elif sport_var1 == 'NBA':
|
368 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
369 |
+
elif slate_var1 == 'Secondary Showdown':
|
370 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
|
371 |
+
if sport_var1 == 'NFL':
|
372 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
373 |
+
elif sport_var1 == 'NBA':
|
374 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
375 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
376 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
377 |
+
if sport_var1 == 'NFL':
|
378 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
379 |
+
elif sport_var1 == 'NBA':
|
380 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
381 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
|
382 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
383 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
388 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
389 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
390 |
elif 'working_seed' not in st.session_state:
|
391 |
+
if slate_var1 == 'Showdown':
|
392 |
+
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
|
393 |
+
if sport_var1 == 'NFL':
|
394 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
395 |
+
elif sport_var1 == 'NBA':
|
396 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
397 |
+
elif slate_var1 == 'Secondary Showdown':
|
398 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
|
399 |
+
if sport_var1 == 'NFL':
|
400 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
401 |
+
elif sport_var1 == 'NBA':
|
402 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
403 |
+
elif slate_var1 == 'Auxiliary Showdown':
|
404 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
|
405 |
+
if sport_var1 == 'NFL':
|
406 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
407 |
+
elif sport_var1 == 'NBA':
|
408 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
409 |
+
raw_baselines = fd_raw
|
410 |
+
column_names = fd_columns
|
411 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
|
412 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
|
413 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
426 |
dk_raw, fd_raw = init_baselines('NFL')
|
427 |
sim_sport_var1 = st.radio("What sport are you working with?", ('NBA', 'NFL'), key='sim_sport_var1')
|
428 |
dk_raw, fd_raw = init_baselines(sim_sport_var1)
|
429 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
|
430 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
431 |
if sim_site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
432 |
raw_baselines = dk_raw
|
433 |
column_names = dk_columns
|
434 |
elif sim_site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
435 |
raw_baselines = fd_raw
|
436 |
column_names = fd_columns
|
|
|
437 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
438 |
if contest_var1 == 'Small':
|
439 |
Contest_Size = 1000
|
440 |
+
st.write("Small field size is 1,000 entrants.")
|
441 |
+
raw_baselines['Own'] = raw_baselines['Small_Field_Own']
|
442 |
+
raw_baselines['CPT_Own'] = raw_baselines['small_CPT_Own']
|
443 |
elif contest_var1 == 'Medium':
|
444 |
Contest_Size = 5000
|
445 |
+
st.write("Medium field size is 5,000 entrants.")
|
446 |
elif contest_var1 == 'Large':
|
447 |
Contest_Size = 10000
|
448 |
+
st.write("Large field size is 10,000 entrants.")
|
449 |
elif contest_var1 == 'Custom':
|
450 |
+
Contest_Size = st.number_input("Insert contest size", value=100, min_value=1, max_value=100000)
|
451 |
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
452 |
if strength_var1 == 'Not Very':
|
453 |
sharp_split = 500000
|
|
|
466 |
if 'working_seed' in st.session_state:
|
467 |
maps_dict = {
|
468 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
469 |
+
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
|
470 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
471 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
472 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
473 |
+
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
|
474 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
475 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
476 |
+
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
477 |
}
|
478 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
|
479 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
480 |
|
481 |
#st.table(Sim_Winner_Frame)
|
|
|
502 |
|
503 |
else:
|
504 |
if sim_site_var1 == 'Draftkings':
|
505 |
+
if sim_slate_var1 == 'Showdown':
|
506 |
+
st.session_state.working_seed = init_DK_seed_frames(sim_sport_var1, sharp_split_var)
|
507 |
+
if sport_var1 == 'NFL':
|
508 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
509 |
+
elif sport_var1 == 'NBA':
|
510 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
511 |
+
elif sim_slate_var1 == 'Secondary Showdown':
|
512 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sim_sport_var1, sharp_split_var)
|
513 |
+
if sport_var1 == 'NFL':
|
514 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
515 |
+
elif sport_var1 == 'NBA':
|
516 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
517 |
+
elif sim_slate_var1 == 'Auxiliary Showdown':
|
518 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
|
519 |
+
if sport_var1 == 'NFL':
|
520 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
521 |
+
elif sport_var1 == 'NBA':
|
522 |
+
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
|
523 |
+
raw_baselines = dk_raw
|
524 |
+
column_names = dk_columns
|
525 |
elif sim_site_var1 == 'Fanduel':
|
526 |
+
if sim_slate_var1 == 'Showdown':
|
527 |
+
st.session_state.working_seed = init_FD_seed_frames(sim_sport_var1, sharp_split_var)
|
528 |
+
if sport_var1 == 'NFL':
|
529 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
530 |
+
elif sport_var1 == 'NBA':
|
531 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
532 |
+
elif sim_slate_var1 == 'Secondary Showdown':
|
533 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sim_sport_var1, sharp_split_var)
|
534 |
+
if sport_var1 == 'NFL':
|
535 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
536 |
+
elif sport_var1 == 'NBA':
|
537 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
538 |
+
elif sim_slate_var1 == 'Auxiliary Showdown':
|
539 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
|
540 |
+
if sport_var1 == 'NFL':
|
541 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
542 |
+
elif sport_var1 == 'NBA':
|
543 |
+
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
|
544 |
+
raw_baselines = fd_raw
|
545 |
+
column_names = fd_columns
|
546 |
maps_dict = {
|
547 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
548 |
+
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
|
549 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
550 |
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
551 |
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
552 |
+
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
|
553 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
554 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
|
555 |
+
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
|
556 |
}
|
557 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
|
558 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
559 |
|
560 |
#st.table(Sim_Winner_Frame)
|
|
|
563 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
564 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
565 |
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
566 |
+
# Add percent rank columns for ownership at each roster position
|
567 |
+
# Calculate Dupes column for Fanduel
|
568 |
+
if sim_site_var1 == 'Fanduel':
|
569 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
|
570 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
|
571 |
+
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
|
572 |
+
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
573 |
+
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
574 |
+
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
575 |
+
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
576 |
+
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
577 |
+
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
578 |
+
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
579 |
+
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
580 |
+
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
581 |
+
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
582 |
+
|
583 |
+
# Calculate ownership product and convert to probability
|
584 |
+
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
|
585 |
+
|
586 |
+
# Calculate average of ownership percent rank columns
|
587 |
+
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
588 |
+
|
589 |
+
# Calculate dupes formula
|
590 |
+
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
|
591 |
+
|
592 |
+
# Round and handle negative values
|
593 |
+
Sim_Winner_Frame['Dupes'] = np.where(
|
594 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
|
595 |
+
0,
|
596 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
597 |
+
)
|
598 |
+
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
|
599 |
+
elif sim_site_var1 == 'Draftkings':
|
600 |
+
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
601 |
+
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
|
602 |
+
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
|
603 |
+
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
|
604 |
+
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
|
605 |
+
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
|
606 |
+
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
|
607 |
+
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
|
608 |
+
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
|
609 |
+
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
|
610 |
+
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
|
611 |
+
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
|
612 |
+
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
|
613 |
+
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
|
614 |
+
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
|
615 |
+
|
616 |
+
# Calculate ownership product and convert to probability
|
617 |
+
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
|
618 |
+
|
619 |
+
# Calculate average of ownership percent rank columns
|
620 |
+
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
|
621 |
+
|
622 |
+
# Calculate dupes formula
|
623 |
+
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
|
624 |
+
|
625 |
+
# Round and handle negative values
|
626 |
+
Sim_Winner_Frame['Dupes'] = np.where(
|
627 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
|
628 |
+
0,
|
629 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
|
630 |
+
)
|
631 |
+
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
|
632 |
+
Sim_Winner_Frame['Dupes'] = np.round(Sim_Winner_Frame['Dupes'], 0)
|
633 |
+
Sim_Winner_Frame['Dupes'] = np.where(
|
634 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
|
635 |
+
0,
|
636 |
+
np.round(Sim_Winner_Frame['dupes_calc'], 0)
|
637 |
+
)
|
638 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=dup_count_columns)
|
639 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=own_columns)
|
640 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=calc_columns)
|
641 |
+
|
642 |
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
643 |
|
644 |
# Type Casting
|
645 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32, 'Dupes': int}
|
646 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
647 |
|
648 |
# Sorting
|
|
|
651 |
|
652 |
# Data Copying
|
653 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
654 |
+
st.session_state.Sim_Winner_Export.iloc[:, 0:6] = st.session_state.Sim_Winner_Export.iloc[:, 0:6].apply(lambda x: x.map(export_id_dict))
|
655 |
|
656 |
# Data Copying
|
657 |
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
|
|
666 |
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
667 |
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
|
668 |
if sim_site_var1 == 'Draftkings':
|
669 |
+
if sim_sport_var1 == 'NFL':
|
670 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
|
671 |
+
elif sim_sport_var1 == 'NBA':
|
672 |
+
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
673 |
elif sim_site_var1 == 'Fanduel':
|
674 |
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
|
675 |
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
|
|
|
681 |
if sim_site_var1 == 'Draftkings':
|
682 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
683 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
684 |
elif sim_site_var1 == 'Fanduel':
|
685 |
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
|
686 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
687 |
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
|
688 |
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
|
689 |
+
if sim_sport_var1 == 'NFL':
|
690 |
+
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
|
691 |
+
elif sim_sport_var1 == 'NBA':
|
692 |
+
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map']) * 1.5
|
693 |
+
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map']) / 100
|
694 |
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
|
695 |
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
|
696 |
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
|
|
|
707 |
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
708 |
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
|
709 |
if sim_site_var1 == 'Draftkings':
|
710 |
+
if sim_sport_var1 == 'NFL':
|
711 |
+
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
|
712 |
+
elif sim_sport_var1 == 'NBA':
|
713 |
+
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
714 |
elif sim_site_var1 == 'Fanduel':
|
715 |
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
|
716 |
+
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']) / 100)
|
717 |
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
718 |
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
719 |
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
|
|
|
728 |
team_working['Freq'] = team_working['Freq'].astype(int)
|
729 |
team_working['Exposure'] = team_working['Freq']/(1000)
|
730 |
st.session_state.team_freq = team_working.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
|
732 |
with st.container():
|
733 |
if st.button("Reset Sim", key='reset_sim'):
|