James McCool commited on
Commit
d503c02
·
1 Parent(s): 50ce3f6

Refactor reassessment logic in app.py to utilize combined frames for 'Manage Portfolio' and 'Export Base', improving data processing and consistency in predictions.

Browse files
Files changed (1) hide show
  1. app.py +24 -2
app.py CHANGED
@@ -186,6 +186,7 @@ selected_tab = st.segmented_control(
186
  selection_mode='single',
187
  default='Data Load',
188
  label_visibility='collapsed',
 
189
  key='tab_selector'
190
  )
191
 
@@ -1603,7 +1604,18 @@ if selected_tab == 'Manage Portfolio':
1603
  st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
1604
 
1605
  # st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1606
- st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
 
 
 
 
 
 
 
 
 
 
 
1607
  st.session_state['export_merge'] = st.session_state['working_frame'].copy()
1608
  elif exp_submitted:
1609
  st.session_state['settings_base'] = False
@@ -1699,7 +1711,17 @@ if selected_tab == 'Manage Portfolio':
1699
  st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
1700
 
1701
  # st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1702
- st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
 
 
 
 
 
 
 
 
 
 
1703
  st.session_state['export_merge'] = st.session_state['export_base'].copy()
1704
 
1705
  with st.container():
 
186
  selection_mode='single',
187
  default='Data Load',
188
  label_visibility='collapsed',
189
+ width='stretch',
190
  key='tab_selector'
191
  )
192
 
 
1604
  st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
1605
 
1606
  # st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1607
+ # st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1608
+ # Store the number of rows in the modified frame
1609
+ num_modified_rows = len(st.session_state['working_frame'])
1610
+
1611
+ # Concatenate the modified frame with the base frame
1612
+ combined_frame = pd.concat([st.session_state['working_frame'], st.session_state['base_frame']], ignore_index=True)
1613
+
1614
+ # Run predict_dupes on the combined frame
1615
+ updated_combined_frame = predict_dupes(combined_frame, st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1616
+
1617
+ # Extract the first N rows (which correspond to our modified frame)
1618
+ st.session_state['working_frame'] = updated_combined_frame.head(num_modified_rows).copy()
1619
  st.session_state['export_merge'] = st.session_state['working_frame'].copy()
1620
  elif exp_submitted:
1621
  st.session_state['settings_base'] = False
 
1711
  st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
1712
 
1713
  # st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1714
+ # st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1715
+ num_modified_rows = len(st.session_state['export_base'])
1716
+
1717
+ # Concatenate the modified frame with the base frame
1718
+ combined_frame = pd.concat([st.session_state['export_base'], st.session_state['base_frame']], ignore_index=True)
1719
+
1720
+ # Run predict_dupes on the combined frame
1721
+ updated_combined_frame = predict_dupes(combined_frame, st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1722
+
1723
+ # Extract the first N rows (which correspond to our modified frame)
1724
+ st.session_state['export_base'] = updated_combined_frame.head(num_modified_rows).copy()
1725
  st.session_state['export_merge'] = st.session_state['export_base'].copy()
1726
 
1727
  with st.container():