James McCool
commited on
Commit
·
d503c02
1
Parent(s):
50ce3f6
Refactor reassessment logic in app.py to utilize combined frames for 'Manage Portfolio' and 'Export Base', improving data processing and consistency in predictions.
Browse files
app.py
CHANGED
@@ -186,6 +186,7 @@ selected_tab = st.segmented_control(
|
|
186 |
selection_mode='single',
|
187 |
default='Data Load',
|
188 |
label_visibility='collapsed',
|
|
|
189 |
key='tab_selector'
|
190 |
)
|
191 |
|
@@ -1603,7 +1604,18 @@ if selected_tab == 'Manage Portfolio':
|
|
1603 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
|
1604 |
|
1605 |
# st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
1606 |
-
st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1607 |
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
|
1608 |
elif exp_submitted:
|
1609 |
st.session_state['settings_base'] = False
|
@@ -1699,7 +1711,17 @@ if selected_tab == 'Manage Portfolio':
|
|
1699 |
st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
|
1700 |
|
1701 |
# st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
1702 |
-
st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1703 |
st.session_state['export_merge'] = st.session_state['export_base'].copy()
|
1704 |
|
1705 |
with st.container():
|
|
|
186 |
selection_mode='single',
|
187 |
default='Data Load',
|
188 |
label_visibility='collapsed',
|
189 |
+
width='stretch',
|
190 |
key='tab_selector'
|
191 |
)
|
192 |
|
|
|
1604 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
|
1605 |
|
1606 |
# st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
1607 |
+
# st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
1608 |
+
# Store the number of rows in the modified frame
|
1609 |
+
num_modified_rows = len(st.session_state['working_frame'])
|
1610 |
+
|
1611 |
+
# Concatenate the modified frame with the base frame
|
1612 |
+
combined_frame = pd.concat([st.session_state['working_frame'], st.session_state['base_frame']], ignore_index=True)
|
1613 |
+
|
1614 |
+
# Run predict_dupes on the combined frame
|
1615 |
+
updated_combined_frame = predict_dupes(combined_frame, st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
1616 |
+
|
1617 |
+
# Extract the first N rows (which correspond to our modified frame)
|
1618 |
+
st.session_state['working_frame'] = updated_combined_frame.head(num_modified_rows).copy()
|
1619 |
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
|
1620 |
elif exp_submitted:
|
1621 |
st.session_state['settings_base'] = False
|
|
|
1711 |
st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
|
1712 |
|
1713 |
# st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
1714 |
+
# st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
1715 |
+
num_modified_rows = len(st.session_state['export_base'])
|
1716 |
+
|
1717 |
+
# Concatenate the modified frame with the base frame
|
1718 |
+
combined_frame = pd.concat([st.session_state['export_base'], st.session_state['base_frame']], ignore_index=True)
|
1719 |
+
|
1720 |
+
# Run predict_dupes on the combined frame
|
1721 |
+
updated_combined_frame = predict_dupes(combined_frame, st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
1722 |
+
|
1723 |
+
# Extract the first N rows (which correspond to our modified frame)
|
1724 |
+
st.session_state['export_base'] = updated_combined_frame.head(num_modified_rows).copy()
|
1725 |
st.session_state['export_merge'] = st.session_state['export_base'].copy()
|
1726 |
|
1727 |
with st.container():
|