James McCool
commited on
Commit
·
872a007
1
Parent(s):
d01aca2
introduced a button to recalculate diversity
Browse files- app.py +5 -1
- global_func/recalc_diversity.py +59 -0
app.py
CHANGED
@@ -27,6 +27,7 @@ from global_func.analyze_player_combos import analyze_player_combos
|
|
27 |
from global_func.stratification_function import stratification_function
|
28 |
from global_func.exposure_spread import exposure_spread
|
29 |
from global_func.reassess_edge import reassess_edge
|
|
|
30 |
|
31 |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
32 |
stacking_sports = ['MLB', 'NHL', 'NFL', 'LOL', 'NCAAF']
|
@@ -1829,7 +1830,7 @@ if selected_tab == 'Manage Portfolio':
|
|
1829 |
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(position_dict)
|
1830 |
|
1831 |
if 'export_file' in st.session_state:
|
1832 |
-
download_port, merge_port, partial_col, clear_export, blank_export_col = st.columns([1, 1, 1, 1, 8])
|
1833 |
with download_port:
|
1834 |
st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
|
1835 |
with merge_port:
|
@@ -1851,6 +1852,9 @@ if selected_tab == 'Manage Portfolio':
|
|
1851 |
st.session_state['display_frame'] = st.session_state['working_frame']
|
1852 |
elif display_frame_source == 'Export Base':
|
1853 |
st.session_state['display_frame'] = st.session_state['export_base']
|
|
|
|
|
|
|
1854 |
|
1855 |
total_rows = len(st.session_state['display_frame'])
|
1856 |
rows_per_page = 100
|
|
|
27 |
from global_func.stratification_function import stratification_function
|
28 |
from global_func.exposure_spread import exposure_spread
|
29 |
from global_func.reassess_edge import reassess_edge
|
30 |
+
from global_func.recalc_diversity import recalc_diversity
|
31 |
|
32 |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
33 |
stacking_sports = ['MLB', 'NHL', 'NFL', 'LOL', 'NCAAF']
|
|
|
1830 |
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(position_dict)
|
1831 |
|
1832 |
if 'export_file' in st.session_state:
|
1833 |
+
download_port, merge_port, partial_col, clear_export, recalc_div_col, blank_export_col = st.columns([1, 1, 1, 1, 1, 8])
|
1834 |
with download_port:
|
1835 |
st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
|
1836 |
with merge_port:
|
|
|
1852 |
st.session_state['display_frame'] = st.session_state['working_frame']
|
1853 |
elif display_frame_source == 'Export Base':
|
1854 |
st.session_state['display_frame'] = st.session_state['export_base']
|
1855 |
+
with recalc_div_col:
|
1856 |
+
if st.button("Recalculate Diversity"):
|
1857 |
+
st.session_state['display_frame']['Diversity'] = recalc_diversity(st.session_state['display_frame'], player_columns)
|
1858 |
|
1859 |
total_rows = len(st.session_state['display_frame'])
|
1860 |
rows_per_page = 100
|
global_func/recalc_diversity.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import time
|
5 |
+
import math
|
6 |
+
from difflib import SequenceMatcher
|
7 |
+
|
8 |
+
def recalc_diversity(portfolio, player_columns):
|
9 |
+
"""
|
10 |
+
Vectorized version of recalc_diversity using NumPy operations.
|
11 |
+
"""
|
12 |
+
# Extract player data and convert to string array
|
13 |
+
player_data = portfolio[player_columns].astype(str).fillna('').values
|
14 |
+
|
15 |
+
# Get all unique players and create a mapping to numeric IDs
|
16 |
+
all_players = set()
|
17 |
+
for row in player_data:
|
18 |
+
for val in row:
|
19 |
+
if isinstance(val, str) and val.strip() != '':
|
20 |
+
all_players.add(val)
|
21 |
+
|
22 |
+
# Create player ID mapping
|
23 |
+
player_to_id = {player: idx for idx, player in enumerate(sorted(all_players))}
|
24 |
+
|
25 |
+
# Convert each row to a binary vector (1 if player is present, 0 if not)
|
26 |
+
n_players = len(all_players)
|
27 |
+
n_rows = len(portfolio)
|
28 |
+
binary_matrix = np.zeros((n_rows, n_players), dtype=np.int8)
|
29 |
+
|
30 |
+
# Vectorized binary matrix creation
|
31 |
+
for i, row in enumerate(player_data):
|
32 |
+
for val in row:
|
33 |
+
if isinstance(val, str) and str(val).strip() != '' and str(val) in player_to_id:
|
34 |
+
binary_matrix[i, player_to_id[str(val)]] = 1
|
35 |
+
|
36 |
+
# Vectorized Jaccard distance calculation
|
37 |
+
intersection_matrix = np.dot(binary_matrix, binary_matrix.T)
|
38 |
+
row_sums = np.sum(binary_matrix, axis=1)
|
39 |
+
union_matrix = row_sums[:, np.newaxis] + row_sums - intersection_matrix
|
40 |
+
|
41 |
+
# Calculate Jaccard distance: 1 - (intersection / union)
|
42 |
+
with np.errstate(divide='ignore', invalid='ignore'):
|
43 |
+
jaccard_similarity = np.divide(intersection_matrix, union_matrix,
|
44 |
+
out=np.zeros_like(intersection_matrix, dtype=float),
|
45 |
+
where=union_matrix != 0)
|
46 |
+
|
47 |
+
jaccard_distance = 1 - jaccard_similarity
|
48 |
+
|
49 |
+
# Exclude self-comparison and calculate average distance for each row
|
50 |
+
np.fill_diagonal(jaccard_distance, 0)
|
51 |
+
row_counts = n_rows - 1
|
52 |
+
similarity_scores = np.sum(jaccard_distance, axis=1) / row_counts
|
53 |
+
|
54 |
+
# Normalize to 0-1 scale
|
55 |
+
score_range = similarity_scores.max() - similarity_scores.min()
|
56 |
+
if score_range > 0:
|
57 |
+
similarity_scores = (similarity_scores - similarity_scores.min()) / score_range
|
58 |
+
|
59 |
+
return similarity_scores
|