James McCool commited on
Commit
0543ffc
·
1 Parent(s): 0327da6

Refactor 'Manage Portfolio' logic to directly use reassess_edge for both working and export frames, streamlining data processing and enhancing efficiency.

Browse files
Files changed (2) hide show
  1. app.py +2 -25
  2. global_func/reassess_edge.py +1 -1
app.py CHANGED
@@ -1614,18 +1614,7 @@ if selected_tab == 'Manage Portfolio':
1614
  st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
1615
 
1616
  # st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1617
- # st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1618
- # Store the number of rows in the modified frame
1619
- num_modified_rows = len(st.session_state['working_frame'])
1620
-
1621
- # Concatenate the modified frame with the base frame
1622
- combined_frame = pd.concat([st.session_state['working_frame'].drop(columns=['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity']), st.session_state['base_frame'].drop(columns=['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity'])], ignore_index=True)
1623
-
1624
- # Run predict_dupes on the combined frame
1625
- updated_combined_frame = predict_dupes(combined_frame, st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1626
-
1627
- # Extract the first N rows (which correspond to our modified frame)
1628
- st.session_state['working_frame'] = updated_combined_frame.head(num_modified_rows).copy()
1629
  st.session_state['export_merge'] = st.session_state['working_frame'].copy()
1630
  elif exp_submitted:
1631
  st.session_state['settings_base'] = False
@@ -1721,19 +1710,7 @@ if selected_tab == 'Manage Portfolio':
1721
  st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
1722
 
1723
  # st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1724
- # st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1725
- num_modified_rows = len(st.session_state['export_base'])
1726
- print(num_modified_rows)
1727
-
1728
- # Concatenate the modified frame with the base frame
1729
- combined_frame = pd.concat([st.session_state['export_base'].drop(columns=['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity']), st.session_state['base_frame'].drop(columns=['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity'])], ignore_index=True)
1730
- print(len(combined_frame))
1731
-
1732
- # Run predict_dupes on the combined frame
1733
- updated_combined_frame = predict_dupes(combined_frame, st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1734
- print(len(updated_combined_frame))
1735
- # Extract the first N rows (which correspond to our modified frame)
1736
- st.session_state['export_base'] = updated_combined_frame.head(num_modified_rows).copy()
1737
  st.session_state['export_merge'] = st.session_state['export_base'].copy()
1738
 
1739
  with st.container():
 
1614
  st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
1615
 
1616
  # st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1617
+ st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
 
 
 
 
 
 
 
 
 
 
 
1618
  st.session_state['export_merge'] = st.session_state['working_frame'].copy()
1619
  elif exp_submitted:
1620
  st.session_state['settings_base'] = False
 
1710
  st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
1711
 
1712
  # st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
1713
+ st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
 
 
 
 
 
 
 
 
 
 
 
 
1714
  st.session_state['export_merge'] = st.session_state['export_base'].copy()
1715
 
1716
  with st.container():
global_func/reassess_edge.py CHANGED
@@ -24,7 +24,7 @@ def reassess_edge(modified_frame: pd.DataFrame, base_frame: pd.DataFrame, maps_d
24
  num_modified_rows = len(modified_frame)
25
 
26
  # Concatenate the modified frame with the base frame
27
- combined_frame = pd.concat([modified_frame, base_frame], ignore_index=True)
28
 
29
  # Run predict_dupes on the combined frame
30
  updated_combined_frame = predict_dupes(combined_frame, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary)
 
24
  num_modified_rows = len(modified_frame)
25
 
26
  # Concatenate the modified frame with the base frame
27
+ combined_frame = pd.concat([modified_frame.drop(columns=['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity']), base_frame.drop(columns=['Dupes', 'Finish_percentile', 'Lineup Edge', 'Win%', 'Weighted Own', 'Geomean', 'Diversity'])], ignore_index=True)
28
 
29
  # Run predict_dupes on the combined frame
30
  updated_combined_frame = predict_dupes(combined_frame, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary)