James McCool commited on
Commit
053e7df
·
1 Parent(s): 00f9a6c

Remove debug output for salary dictionary in app.py and correct player exposure percentage calculation in create_player_comparison.py

Browse files

- Eliminated the print statement displaying the salary dictionary in app.py to streamline the output and reduce unnecessary session state visibility.
- Updated the calculation of player exposure percentages in create_player_comparison.py to use the correct DataFrame subset, ensuring accurate representation of player data.

app.py CHANGED
@@ -146,7 +146,6 @@ with tab1:
146
  st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
147
  st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
148
  st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
149
- st.write(st.session_state['salary_dict'])
150
 
151
  with tab2:
152
  excluded_cols = ['BaseName', 'EntryCount']
 
146
  st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
147
  st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
148
  st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
 
149
 
150
  with tab2:
151
  excluded_cols = ['BaseName', 'EntryCount']
global_func/create_player_comparison.py CHANGED
@@ -14,7 +14,7 @@ def create_player_comparison(df: pd.DataFrame, player_columns: list, entrants: l
14
  overall_players = pd.Series(list(df[df['BaseName'] == each_user][player_columns].values.flatten())).value_counts()
15
 
16
  set_frame = overall_players.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
17
- set_frame['Percent'] = set_frame['Count'] / len(overall_players[overall_players['BaseName'] == each_user])
18
  set_frame = set_frame[['Player', 'Percent']]
19
  set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_user}'})
20
  player_frame = pd.merge(player_frame, set_frame, on='Player', how='outer')
 
14
  overall_players = pd.Series(list(df[df['BaseName'] == each_user][player_columns].values.flatten())).value_counts()
15
 
16
  set_frame = overall_players.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
17
+ set_frame['Percent'] = set_frame['Count'] / len(df[df['BaseName'] == each_user])
18
  set_frame = set_frame[['Player', 'Percent']]
19
  set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_user}'})
20
  player_frame = pd.merge(player_frame, set_frame, on='Player', how='outer')