# Ke Chen # knutchen@ucsd.edu # Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data # Some Common Methods import numpy as np from scipy.signal import butter, filtfilt import torch import torch.nn as nn from torch import Tensor from typing import Optional import logging import os import sys import h5py import csv import time import json import museval import librosa from datetime import datetime def create_folder(fd): if not os.path.exists(fd): os.makedirs(fd) def get_filename(path): path = os.path.realpath(path) na_ext = path.split('/')[-1] na = os.path.splitext(na_ext)[0] return na def get_sub_filepaths(folder): paths = [] for root, dirs, files in os.walk(folder): for name in files: path = os.path.join(root, name) paths.append(path) return paths def np_to_pytorch(x, device = None): if 'float' in str(x.dtype): x = torch.Tensor(x) elif 'int' in str(x.dtype): x = torch.LongTensor(x) else: return x return x.to(device) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def calculate_average_energy(x): return np.mean(np.square(x)) def id_to_one_hot(id, classes_num): one_hot = np.zeros(classes_num) one_hot[id] = 1 return one_hot def ids_to_hots(ids, classes_num): hots = np.zeros(classes_num) for id in ids: hots[id] = 1 return hots def float32_to_int16(x): assert np.max(np.abs(x)) <= 1. return (x * 32767.).astype(np.int16) def int16_to_float32(x): return (x / 32767.).astype(np.float32) def collect_fn(list_data_dict): np_data_dict = {} for key in list_data_dict[0].keys(): np_data_dict[key] = np.array([data_dict[key] for data_dict in list_data_dict]) return np_data_dict def dump_config(config, filename, include_time = False): save_time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") config_json = {} for key in dir(config): if not key.startswith("_"): config_json[key] = eval("config." + key) if include_time: filename = filename + "_" + save_time with open(filename + ".json", "w") as f: json.dump(config_json, f ,indent=4) def get_segment_bgn_end_samples(anchor_index, segment_frames, hop_samples, clip_samples): bgn_frame = anchor_index - segment_frames // 2 end_frame = anchor_index + segment_frames // 2 bgn_sample = bgn_frame * hop_samples end_sample = end_frame * hop_samples segment_samples = segment_frames * hop_samples if bgn_sample < 0: bgn_sample = 0 end_sample = segment_samples if end_sample > clip_samples: bgn_sample = clip_samples - segment_samples end_sample = clip_samples return bgn_sample, end_sample def get_mix_data(waveforms, con_vectors, class_ids, indexes, mix_type = "mixture"): # define return data mixtures = [] sources = [] conditions = [] gds = [] for i in range(0, len(indexes), 2): n1 = indexes[i] n2 = indexes[i + 1] # energy normalization e1 = np.mean(np.square(waveforms[n1])) e2 = np.mean(np.square(waveforms[n2])) ratio = (e1 / max(1e-8, e2)) ** 0.5 ratio = np.clip(ratio, 0.02, 50) waveforms[n2] *= ratio mixture = waveforms[n1] + waveforms[n2] # form data if mix_type == "clean": mixtures.append(waveforms[n1]) mixtures.append(waveforms[n2]) sources.append(waveforms[n1]) sources.append(waveforms[n2]) elif mix_type == "silence": mixtures.append(waveforms[n2]) mixtures.append(waveforms[n1]) sources.append(np.zeros_like(waveforms[n1])) sources.append(np.zeros_like(waveforms[n2])) else: mixtures.append(mixture) mixtures.append(mixture) sources.append(waveforms[n1]) sources.append(waveforms[n2]) conditions.append(con_vectors[n1]) conditions.append(con_vectors[n2]) gds.append(class_ids[n1]) gds.append(class_ids[n2]) return mixtures, sources, conditions, gds # generate a list def get_balanced_class_list(index_path, factor = 3, black_list = None, random_seed = 0): # initialization random_state = np.random.RandomState(random_seed) logging.info("Load Indexes...............") with h5py.File(index_path, "r") as hf: indexes = hf["index_in_hdf5"][:] targets = hf["target"][:].astype(np.float32) (audios_num, classes_num) = targets.shape # set the indexes per class for balanced list indexes_per_class = [] for k in range(classes_num): indexes_per_class.append( np.where(targets[:, k] == 1)[0] ) logging.info("Load Indexes Succeed...............") return indexes_per_class def dataset_worker_init_fn_seed(worker_id): seed = np.random.randint(0, 224141) + worker_id * np.random.randint(100,1000) print(seed) np.random.seed(seed) def calculate_sdr(ref, est, scaling=False): s = museval.evaluate(ref[None,:,None], est[None,:,None], win = len(ref), hop = len(ref)) return s[0][0] def butter_lowpass_filter(data, cuton, cutoff, fs, order): normal_cutoff = cutoff / (0.5 * fs) normal_cuton = cuton / (0.5 * fs) b, a = butter(order, [normal_cuton, normal_cutoff], btype="band", analog=False) y = filtfilt(b,a, data) return y def calculate_silence_sdr(mixture, est): sdr = 10. * ( np.log10(np.clip(np.mean(mixture ** 2), 1e-8, np.inf)) \ - np.log10(np.clip(np.mean(est ** 2), 1e-8, np.inf))) return sdr def evaluate_sdr(ref, est, class_ids, mix_type = "mixture"): sdr_results = [] if mix_type == "silence": for i in range(len(ref)): sdr = calculate_silence_sdr(ref[i,:,0], est[i,:,0]) sdr_results.append([sdr, class_ids[i]]) else: for i in range(len(ref)): if np.sum(ref[i,:,0]) == 0 or np.sum(est[i,:,0]) == 0: continue else: sdr_c = calculate_sdr(ref[i,:,0], est[i,:,0], scaling = True) sdr_results.append([sdr_c, class_ids[i]]) return sdr_results # set the audio into the format that can be fed into the model # resample -> convert to mono -> output the audio # track [n_sample, n_channel] def prepprocess_audio(track, ofs, rfs, mono_type = "mix"): if track.shape[-1] > 1: # stereo if mono_type == "mix": track = np.transpose(track, (1,0)) track = librosa.to_mono(track) elif mono_type == "left": track = track[:, 0] elif mono_type == "right": track = track[:, 1] else: track = track[:, 0] # track [n_sample] if ofs != rfs: track = librosa.resample(track, ofs, rfs) return track # ************************************************* # all below is referred from the wiener filter code def atan2(y, x): r"""Element-wise arctangent function of y/x. Returns a new tensor with signed angles in radians. It is an alternative implementation of torch.atan2 Args: y (Tensor): First input tensor x (Tensor): Second input tensor [shape=y.shape] Returns: Tensor: [shape=y.shape]. """ pi = 2 * torch.asin(torch.tensor(1.0)) x += ((x == 0) & (y == 0)) * 1.0 out = torch.atan(y / x) out += ((y >= 0) & (x < 0)) * pi out -= ((y < 0) & (x < 0)) * pi out *= 1 - ((y > 0) & (x == 0)) * 1.0 out += ((y > 0) & (x == 0)) * (pi / 2) out *= 1 - ((y < 0) & (x == 0)) * 1.0 out += ((y < 0) & (x == 0)) * (-pi / 2) return out # Define basic complex operations on torch.Tensor objects whose last dimension # consists in the concatenation of the real and imaginary parts. def _norm(x: torch.Tensor) -> torch.Tensor: r"""Computes the norm value of a torch Tensor, assuming that it comes as real and imaginary part in its last dimension. Args: x (Tensor): Input Tensor of shape [shape=(..., 2)] Returns: Tensor: shape as x excluding the last dimension. """ return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2 def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise multiplication of two complex Tensors described through their real and imaginary parts. The result is added to the `out` tensor""" # check `out` and allocate it if needed target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) if out is a: real_a = a[..., 0] out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1]) out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0]) else: out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]) out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]) return out def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise multiplication of two complex Tensors described through their real and imaginary parts can work in place in case out is a only""" target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) if out is a: real_a = a[..., 0] out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1] out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0] else: out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1] out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0] return out def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise multiplicative inverse of a Tensor with complex entries described through their real and imaginary parts. can work in place in case out is z""" ez = _norm(z) if out is None or out.shape != z.shape: out = torch.zeros_like(z) out[..., 0] = z[..., 0] / ez out[..., 1] = -z[..., 1] / ez return out def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise complex conjugate of a Tensor with complex entries described through their real and imaginary parts. can work in place in case out is z""" if out is None or out.shape != z.shape: out = torch.zeros_like(z) out[..., 0] = z[..., 0] out[..., 1] = -z[..., 1] return out def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """ Invert 1x1 or 2x2 matrices Will generate errors if the matrices are singular: user must handle this through his own regularization schemes. Args: M (Tensor): [shape=(..., nb_channels, nb_channels, 2)] matrices to invert: must be square along dimensions -3 and -2 Returns: invM (Tensor): [shape=M.shape] inverses of M """ nb_channels = M.shape[-2] if out is None or out.shape != M.shape: out = torch.empty_like(M) if nb_channels == 1: # scalar case out = _inv(M, out) elif nb_channels == 2: # two channels case: analytical expression # first compute the determinent det = _mul(M[..., 0, 0, :], M[..., 1, 1, :]) det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :]) # invert it invDet = _inv(det) # then fill out the matrix with the inverse out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :]) out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :]) out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :]) out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :]) else: raise Exception("Only 2 channels are supported for the torch version.") return out def expectation_maximization( y: torch.Tensor, x: torch.Tensor, iterations: int = 2, eps: float = 1e-10, batch_size: int = 200, ): r"""Expectation maximization algorithm, for refining source separation estimates. Args: y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)] initial estimates for the sources x (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2)] complex STFT of the mixture signal iterations (int): [scalar] number of iterations for the EM algorithm. eps (float or None): [scalar] The epsilon value to use for regularization and filters. Returns: y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)] estimated sources after iterations v (Tensor): [shape=(nb_frames, nb_bins, nb_sources)] estimated power spectral densities R (Tensor): [shape=(nb_bins, nb_channels, nb_channels, 2, nb_sources)] estimated spatial covariance matrices """ # dimensions (nb_frames, nb_bins, nb_channels) = x.shape[:-1] nb_sources = y.shape[-1] regularization = torch.cat( ( torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None], torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device), ), dim=2, ) regularization = torch.sqrt(torch.as_tensor(eps)) * ( regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1)) ) # allocate the spatial covariance matrices R = [ torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device) for j in range(nb_sources) ] weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device) v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device) for it in range(iterations): # constructing the mixture covariance matrix. Doing it with a loop # to avoid storing anytime in RAM the whole 6D tensor # update the PSD as the average spectrogram over channels v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2) # update spatial covariance matrices (weighted update) for j in range(nb_sources): R[j] = torch.tensor(0.0, device=x.device) weight = torch.tensor(eps, device=x.device) pos: int = 0 batch_size = batch_size if batch_size else nb_frames while pos < nb_frames: t = torch.arange(pos, min(nb_frames, pos + batch_size)) pos = int(t[-1]) + 1 R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0) weight = weight + torch.sum(v[t, ..., j], dim=0) R[j] = R[j] / weight[..., None, None, None] weight = torch.zeros_like(weight) # cloning y if we track gradient, because we're going to update it if y.requires_grad: y = y.clone() pos = 0 while pos < nb_frames: t = torch.arange(pos, min(nb_frames, pos + batch_size)) pos = int(t[-1]) + 1 y[t, ...] = torch.tensor(0.0, device=x.device) # compute mix covariance matrix Cxx = regularization for j in range(nb_sources): Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone()) # invert it inv_Cxx = _invert(Cxx) # separate the sources for j in range(nb_sources): # create a wiener gain for this source gain = torch.zeros_like(inv_Cxx) # computes multichannel Wiener gain as v_j R_j inv_Cxx indices = torch.cartesian_prod( torch.arange(nb_channels), torch.arange(nb_channels), torch.arange(nb_channels), ) for index in indices: gain[:, :, index[0], index[1], :] = _mul_add( R[j][None, :, index[0], index[2], :].clone(), inv_Cxx[:, :, index[2], index[1], :], gain[:, :, index[0], index[1], :], ) gain = gain * v[t, ..., None, None, None, j] # apply it to the mixture for i in range(nb_channels): y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j]) return y, v, R def _covariance(y_j): """ Compute the empirical covariance for a source. Args: y_j (Tensor): complex stft of the source. [shape=(nb_frames, nb_bins, nb_channels, 2)]. Returns: Cj (Tensor): [shape=(nb_frames, nb_bins, nb_channels, nb_channels, 2)] just y_j * conj(y_j.T): empirical covariance for each TF bin. """ (nb_frames, nb_bins, nb_channels) = y_j.shape[:-1] Cj = torch.zeros( (nb_frames, nb_bins, nb_channels, nb_channels, 2), dtype=y_j.dtype, device=y_j.device, ) indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels)) for index in indices: Cj[:, :, index[0], index[1], :] = _mul_add( y_j[:, :, index[0], :], _conj(y_j[:, :, index[1], :]), Cj[:, :, index[0], index[1], :], ) return Cj def wiener( targets_spectrograms: torch.Tensor, mix_stft: torch.Tensor, iterations: int = 1, softmask: bool = False, residual: bool = False, scale_factor: float = 10.0, eps: float = 1e-10, ): """Wiener-based separation for multichannel audio. Returns: Tensor: shape=(nb_frames, nb_bins, nb_channels, complex=2, nb_sources) STFT of estimated sources """ if softmask: # if we use softmask, we compute the ratio mask for all targets and # multiply by the mix stft y = ( mix_stft[..., None] * ( targets_spectrograms / (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype)) )[..., None, :] ) else: # otherwise, we just multiply the targets spectrograms with mix phase # we tacitly assume that we have magnitude estimates. angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None] nb_sources = targets_spectrograms.shape[-1] y = torch.zeros( mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device ) y[..., 0, :] = targets_spectrograms * torch.cos(angle) y[..., 1, :] = targets_spectrograms * torch.sin(angle) if residual: # if required, adding an additional target as the mix minus # available targets y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1) if iterations == 0: return y # we need to refine the estimates. Scales down the estimates for # numerical stability max_abs = torch.max( torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device), torch.sqrt(_norm(mix_stft)).max() / scale_factor, ) mix_stft = mix_stft / max_abs y = y / max_abs # call expectation maximization y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0] # scale estimates up again y = y * max_abs return y def split_nparray_with_overlap(array, array_size, overlap_size): result = [] element_size = int(len(array) / array_size) for i in range(array_size): offset = int(i * element_size) last_loop = i == array_size chunk = array[offset : offset + element_size + (0 if last_loop else overlap_size)] chunk = chunk.copy() chunk.resize(element_size + overlap_size, refcheck = False) result.append(chunk) return np.array(result)