from fastapi import FastAPI,Query from pydantic import BaseModel from transformers import pipeline app = FastAPI() @app.get("/") def greet_json(): return {"status": "Its working built by Fayaz"} # Initialize the text generation pipeline pipe = pipeline("text2text-generation", model="google/flan-t5-small") # checking for ofingpt # ofintech/FinGPT_0.1.3 # pipe = pipeline("text2text-generation", model="MudassirFayaz/llama-2-7b_career_0.6.0", trust_remote_code=True) # Initialize the text generation pipeline # model = AutoModelForSeq2SeqLM.from_pretrained("ofintech/FinGPT_0.1.3") # pipe = pipeline("text2text-generation", model="MudassirFayaz/llama-2-7b_career_0.6.0", tokenizer=tokenizer) @app.get("/") def home(): return {"message": "Hello World"} # Define a request model class TextRequest(BaseModel): text: str # Define a function to handle the POST request at `/generate` @app.post("/generate") def generate(request: TextRequest): # Use the pipeline to generate text from given input text output = pipe(request.text) # Return the generated text in JSON response return {"output": output[0]['generated_text']}