Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import (
|
4 |
+
AutomaticSpeechRecognitionPipeline,
|
5 |
+
WhisperForConditionalGeneration,
|
6 |
+
WhisperTokenizer,
|
7 |
+
WhisperProcessor,
|
8 |
+
)
|
9 |
+
from peft import PeftModel, PeftConfig
|
10 |
+
|
11 |
+
peft_model_id = "Moustapha91/whisper-small-wolof"
|
12 |
+
language = "French"
|
13 |
+
task = "transcribe"
|
14 |
+
|
15 |
+
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
16 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
17 |
+
peft_config.base_model_name_or_path,
|
18 |
+
device_map="auto" # On supprime la quantization en 8 bits
|
19 |
+
)
|
20 |
+
|
21 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
22 |
+
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
|
23 |
+
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
|
24 |
+
feature_extractor = processor.feature_extractor
|
25 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
|
26 |
+
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
27 |
+
|
28 |
+
def transcribe(audio):
|
29 |
+
text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
|
30 |
+
return text
|
31 |
+
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=transcribe,
|
34 |
+
inputs=gr.Audio(type="filepath"), # On supprime 'source' pour éviter l'erreur
|
35 |
+
outputs="text",
|
36 |
+
title="PEFT LoRA + Whisper Small Wolof",
|
37 |
+
description="Realtime demo for Wolof speech recognition using `PEFT-LoRA` fine-tuned Whisper Small model.",
|
38 |
+
)
|
39 |
+
|
40 |
+
iface.launch(share=True)
|