from torch import nn class ClassificationModel(nn.Module): def __init__(self, base_model): super(ClassificationModel, self).__init__() self.base_model = base_model self.classifier = nn.Sequential( nn.Linear(768, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, 8), nn.LogSoftmax(dim=1) ) def forward(self, input_ids, attention_mask): hidden_states = self.base_model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state cls_output = hidden_states[:, 0, :] probs = self.classifier(cls_output) return probs