MojoHz commited on
Commit
ca467fa
·
verified ·
1 Parent(s): 2ce9573

Delete gradiomojo.ipynb

Browse files
Files changed (1) hide show
  1. gradiomojo.ipynb +0 -115
gradiomojo.ipynb DELETED
@@ -1,115 +0,0 @@
1
- {
2
- "nbformat": 4,
3
- "nbformat_minor": 0,
4
- "metadata": {
5
- "colab": {
6
- "provenance": []
7
- },
8
- "kernelspec": {
9
- "name": "python3",
10
- "display_name": "Python 3"
11
- },
12
- "language_info": {
13
- "name": "python"
14
- }
15
- },
16
- "cells": [
17
- {
18
- "cell_type": "code",
19
- "execution_count": 5,
20
- "metadata": {
21
- "colab": {
22
- "base_uri": "https://localhost:8080/",
23
- "height": 646
24
- },
25
- "id": "Y2i3qMAayerW",
26
- "outputId": "09a4d84b-3aab-4886-b5d4-948f48ca5017"
27
- },
28
- "outputs": [
29
- {
30
- "output_type": "stream",
31
- "name": "stdout",
32
- "text": [
33
- "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
34
- "\n",
35
- "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
36
- "Running on public URL: https://abaebd2aaded04d1bb.gradio.live\n",
37
- "\n",
38
- "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
39
- ]
40
- },
41
- {
42
- "output_type": "display_data",
43
- "data": {
44
- "text/plain": [
45
- "<IPython.core.display.HTML object>"
46
- ],
47
- "text/html": [
48
- "<div><iframe src=\"https://abaebd2aaded04d1bb.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
49
- ]
50
- },
51
- "metadata": {}
52
- },
53
- {
54
- "output_type": "execute_result",
55
- "data": {
56
- "text/plain": []
57
- },
58
- "metadata": {},
59
- "execution_count": 5
60
- }
61
- ],
62
- "source": [
63
- "import gradio as gr\n",
64
- "import pandas as pd\n",
65
- "import numpy as np\n",
66
- "import pickle\n",
67
- "\n",
68
- "# Load the trained model from the pickle file\n",
69
- "with open('best_arima_models.pkl', 'rb') as f:\n",
70
- " model = pickle.load(f)\n",
71
- "\n",
72
- "def predict_demand(mapped_code, num_months):\n",
73
- " try:\n",
74
- " # Retrieve the specific model for the mapped code\n",
75
- " if mapped_code not in model:\n",
76
- " return f\"No model found for Mapped Code: {mapped_code}\"\n",
77
- "\n",
78
- " model_for_code = model[mapped_code]\n",
79
- "\n",
80
- " # Generate a date range for the prediction period\n",
81
- " dates = pd.date_range(start=pd.Timestamp.today(), periods=num_months, freq='M')\n",
82
- "\n",
83
- " # Make predictions\n",
84
- " future_steps = len(dates)\n",
85
- " forecast = model_for_code.forecast(steps=future_steps)\n",
86
- "\n",
87
- " # Prepare a DataFrame for display\n",
88
- " df = pd.DataFrame({\n",
89
- " 'Date': dates.strftime('%Y-%m'),\n",
90
- " 'Predicted Demand': forecast\n",
91
- " })\n",
92
- "\n",
93
- " return df\n",
94
- "\n",
95
- " except Exception as e:\n",
96
- " print(f\"Error occurred: {e}\")\n",
97
- " return f\"An error occurred: {str(e)}\"\n",
98
- "\n",
99
- "# Gradio Interface Definition\n",
100
- "gr.Interface(\n",
101
- " fn=predict_demand,\n",
102
- " inputs=[\n",
103
- " gr.Textbox(label=\"Mapped Code\", placeholder=\"Enter mapped code here\"),\n",
104
- " gr.Slider(minimum=1, maximum=12, step=1, label=\"Number of Months\")\n",
105
- " ],\n",
106
- " outputs=[\n",
107
- " gr.Dataframe(label=\"Predicted Demand\")\n",
108
- " ],\n",
109
- " title=\"Demand Forecasting\",\n",
110
- " description=\"Enter the mapped code and the number of months to predict future demand.\"\n",
111
- ").launch()\n"
112
- ]
113
- }
114
- ]
115
- }