Spaces:
Runtime error
Runtime error
Delete gradiomojo.ipynb
Browse files- gradiomojo.ipynb +0 -115
gradiomojo.ipynb
DELETED
@@ -1,115 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"nbformat": 4,
|
3 |
-
"nbformat_minor": 0,
|
4 |
-
"metadata": {
|
5 |
-
"colab": {
|
6 |
-
"provenance": []
|
7 |
-
},
|
8 |
-
"kernelspec": {
|
9 |
-
"name": "python3",
|
10 |
-
"display_name": "Python 3"
|
11 |
-
},
|
12 |
-
"language_info": {
|
13 |
-
"name": "python"
|
14 |
-
}
|
15 |
-
},
|
16 |
-
"cells": [
|
17 |
-
{
|
18 |
-
"cell_type": "code",
|
19 |
-
"execution_count": 5,
|
20 |
-
"metadata": {
|
21 |
-
"colab": {
|
22 |
-
"base_uri": "https://localhost:8080/",
|
23 |
-
"height": 646
|
24 |
-
},
|
25 |
-
"id": "Y2i3qMAayerW",
|
26 |
-
"outputId": "09a4d84b-3aab-4886-b5d4-948f48ca5017"
|
27 |
-
},
|
28 |
-
"outputs": [
|
29 |
-
{
|
30 |
-
"output_type": "stream",
|
31 |
-
"name": "stdout",
|
32 |
-
"text": [
|
33 |
-
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
34 |
-
"\n",
|
35 |
-
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
|
36 |
-
"Running on public URL: https://abaebd2aaded04d1bb.gradio.live\n",
|
37 |
-
"\n",
|
38 |
-
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
39 |
-
]
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"output_type": "display_data",
|
43 |
-
"data": {
|
44 |
-
"text/plain": [
|
45 |
-
"<IPython.core.display.HTML object>"
|
46 |
-
],
|
47 |
-
"text/html": [
|
48 |
-
"<div><iframe src=\"https://abaebd2aaded04d1bb.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
49 |
-
]
|
50 |
-
},
|
51 |
-
"metadata": {}
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"output_type": "execute_result",
|
55 |
-
"data": {
|
56 |
-
"text/plain": []
|
57 |
-
},
|
58 |
-
"metadata": {},
|
59 |
-
"execution_count": 5
|
60 |
-
}
|
61 |
-
],
|
62 |
-
"source": [
|
63 |
-
"import gradio as gr\n",
|
64 |
-
"import pandas as pd\n",
|
65 |
-
"import numpy as np\n",
|
66 |
-
"import pickle\n",
|
67 |
-
"\n",
|
68 |
-
"# Load the trained model from the pickle file\n",
|
69 |
-
"with open('best_arima_models.pkl', 'rb') as f:\n",
|
70 |
-
" model = pickle.load(f)\n",
|
71 |
-
"\n",
|
72 |
-
"def predict_demand(mapped_code, num_months):\n",
|
73 |
-
" try:\n",
|
74 |
-
" # Retrieve the specific model for the mapped code\n",
|
75 |
-
" if mapped_code not in model:\n",
|
76 |
-
" return f\"No model found for Mapped Code: {mapped_code}\"\n",
|
77 |
-
"\n",
|
78 |
-
" model_for_code = model[mapped_code]\n",
|
79 |
-
"\n",
|
80 |
-
" # Generate a date range for the prediction period\n",
|
81 |
-
" dates = pd.date_range(start=pd.Timestamp.today(), periods=num_months, freq='M')\n",
|
82 |
-
"\n",
|
83 |
-
" # Make predictions\n",
|
84 |
-
" future_steps = len(dates)\n",
|
85 |
-
" forecast = model_for_code.forecast(steps=future_steps)\n",
|
86 |
-
"\n",
|
87 |
-
" # Prepare a DataFrame for display\n",
|
88 |
-
" df = pd.DataFrame({\n",
|
89 |
-
" 'Date': dates.strftime('%Y-%m'),\n",
|
90 |
-
" 'Predicted Demand': forecast\n",
|
91 |
-
" })\n",
|
92 |
-
"\n",
|
93 |
-
" return df\n",
|
94 |
-
"\n",
|
95 |
-
" except Exception as e:\n",
|
96 |
-
" print(f\"Error occurred: {e}\")\n",
|
97 |
-
" return f\"An error occurred: {str(e)}\"\n",
|
98 |
-
"\n",
|
99 |
-
"# Gradio Interface Definition\n",
|
100 |
-
"gr.Interface(\n",
|
101 |
-
" fn=predict_demand,\n",
|
102 |
-
" inputs=[\n",
|
103 |
-
" gr.Textbox(label=\"Mapped Code\", placeholder=\"Enter mapped code here\"),\n",
|
104 |
-
" gr.Slider(minimum=1, maximum=12, step=1, label=\"Number of Months\")\n",
|
105 |
-
" ],\n",
|
106 |
-
" outputs=[\n",
|
107 |
-
" gr.Dataframe(label=\"Predicted Demand\")\n",
|
108 |
-
" ],\n",
|
109 |
-
" title=\"Demand Forecasting\",\n",
|
110 |
-
" description=\"Enter the mapped code and the number of months to predict future demand.\"\n",
|
111 |
-
").launch()\n"
|
112 |
-
]
|
113 |
-
}
|
114 |
-
]
|
115 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|