Mohuu0601 commited on
Commit
6a487fb
·
verified ·
1 Parent(s): ff0472c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ # Step 1: Load the Hugging Face model
5
+ @st.cache_resource
6
+ def load_model():
7
+ return pipeline("text-generation", model="gpt2") # Replace 'gpt2' with another model if needed
8
+
9
+ generator = load_model()
10
+
11
+ # Step 2: Design the Streamlit layout
12
+ st.title("Hugging Face Text Generator")
13
+ st.write("Generate creative text using GPT-2!")
14
+
15
+ # Get user input
16
+ user_input = st.text_area("Enter a prompt for text generation:", "Once upon a time")
17
+
18
+ # Generate text when the button is clicked
19
+ if st.button("Generate Text"):
20
+ with st.spinner("Generating..."):
21
+ results = generator(user_input, max_length=50, num_return_sequences=1)
22
+ generated_text = results[0]["generated_text"]
23
+ st.subheader("Generated Text:")
24
+ st.write(generated_text)
25
+
26
+ st.write("Powered by Streamlit and Hugging Face 🤗")
27
+
28
+
29
+
30
+ import streamlit as st
31
+ from transformers import pipeline
32
+ from PIL import Image
33
+
34
+ # Load Hugging Face models
35
+ @st.cache_resource
36
+ def load_image_classifier():
37
+ return pipeline("image-classification", model="google/vit-base-patch16-224")
38
+
39
+ @st.cache_resource
40
+ def load_text_classifier():
41
+ return pipeline("sentiment-analysis") # Default model for sentiment analysis
42
+
43
+ # Initialize models
44
+ image_classifier = load_image_classifier()
45
+ text_classifier = load_text_classifier()
46
+
47
+ # App title and navigation
48
+ st.title("Hugging Face Classification App")
49
+ st.sidebar.title("Choose Task")
50
+ task = st.sidebar.selectbox("Select a task", ["Image Classification", "Text Classification"])
51
+
52
+ if task == "Image Classification":
53
+ st.header("Image Classification")
54
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
55
+ if uploaded_file is not None:
56
+ # Display uploaded image
57
+ image = Image.open(uploaded_file)
58
+ st.image(image, caption="Uploaded Image", use_column_width=True)
59
+
60
+ # Classify the image
61
+ if st.button("Classify Image"):
62
+ with st.spinner("Classifying..."):
63
+ results = image_classifier(image)
64
+ st.subheader("Classification Results")
65
+ for result in results:
66
+ st.write(f"**{result['label']}**: {result['score']:.2f}")
67
+
68
+ elif task == "Text Classification":
69
+ st.header("Text Classification")
70
+ text_input = st.text_area("Enter text for classification", "Streamlit is an amazing tool!")
71
+
72
+ # Classify the text
73
+ if st.button("Classify Text"):
74
+ with st.spinner("Classifying..."):
75
+ results = text_classifier(text_input)
76
+ st.subheader("Classification Results")
77
+ for result in results:
78
+ st.write(f"**{result['label']}**: {result['score']:.2f}")
79
+
80
+ st.write("Powered by Streamlit and Hugging Face 🤗")
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+