# Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr model = AutoModelForCausalLM.from_pretrained("MohamedTalaat91/gpt2-wikitext2") tokenizer = AutoTokenizer.from_pretrained("MohamedTalaat91/gpt2-tokenizer") def generate(input_text) : inputs = tokenizer(input_text, return_tensors="pt") # Generate text based on the input generated_ids = model.generate( inputs['input_ids'], max_length=100, # Adjust the max length as needed num_return_sequences=1, # Number of texts to generate do_sample=True, # Enable sampling (as opposed to greedy search) top_k=50, # Top-k sampling to introduce diversity temperature=0.7 # Controls randomness in sampling ) generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_text import gradio as gr with gr.Blocks() as demo: gr.Markdown("# GPT-2 WikiText2") with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text") generate_button = gr.Button("Generate") output_text = gr.Textbox(label="Generated Text") generate_button.click(fn=generate, inputs=input_text, outputs=output_text) demo.launch(share=True)